Remarks on the existence of nonoscillatory solutions of half-linear ordinary differential equations, II
Archivum Mathematicum (2021)
- Volume: 057, Issue: 1, page 41-60
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topNaito, Manabu. "Remarks on the existence of nonoscillatory solutions of half-linear ordinary differential equations, II." Archivum Mathematicum 057.1 (2021): 41-60. <http://eudml.org/doc/297252>.
@article{Naito2021,
abstract = {We consider the half-linear differential equation of the form \[ (p(t)|x^\{\prime \}|^\{\alpha \}\mathrm \{sgn\}\,x^\{\prime \})^\{\prime \} + q(t)|x|^\{\alpha \}\mathrm \{sgn\}\,x = 0\,, \quad t \ge t\_\{0\} \,, \]
under the assumption that $p(t)^\{-1/\alpha \}$ is integrable on $[t_\{0\}, \infty )$. It is shown that if a certain condition is satisfied, then the above equation has a pair of nonoscillatory solutions with specific asymptotic behavior as $t \rightarrow \infty $.},
author = {Naito, Manabu},
journal = {Archivum Mathematicum},
keywords = {asymptotic behavior; nonoscillatory solution; half-linear differential equation; Hardy-type inequality},
language = {eng},
number = {1},
pages = {41-60},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Remarks on the existence of nonoscillatory solutions of half-linear ordinary differential equations, II},
url = {http://eudml.org/doc/297252},
volume = {057},
year = {2021},
}
TY - JOUR
AU - Naito, Manabu
TI - Remarks on the existence of nonoscillatory solutions of half-linear ordinary differential equations, II
JO - Archivum Mathematicum
PY - 2021
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 057
IS - 1
SP - 41
EP - 60
AB - We consider the half-linear differential equation of the form \[ (p(t)|x^{\prime }|^{\alpha }\mathrm {sgn}\,x^{\prime })^{\prime } + q(t)|x|^{\alpha }\mathrm {sgn}\,x = 0\,, \quad t \ge t_{0} \,, \]
under the assumption that $p(t)^{-1/\alpha }$ is integrable on $[t_{0}, \infty )$. It is shown that if a certain condition is satisfied, then the above equation has a pair of nonoscillatory solutions with specific asymptotic behavior as $t \rightarrow \infty $.
LA - eng
KW - asymptotic behavior; nonoscillatory solution; half-linear differential equation; Hardy-type inequality
UR - http://eudml.org/doc/297252
ER -
References
top- Beesack, P.R., 10.2140/pjm.1961.11.39, Pacific J. Math. 11 (1961), 39–61. (1961) MR0121449DOI10.2140/pjm.1961.11.39
- Došlý, O., Řehák, P., Half-Linear Differential Equations, North-Holland Mathematics Studies, vol. 202, Elsevier, Amsterdam, 2005. (2005) MR2158903
- Hardy, G.H., Littlewood, J.E., Pólya, G., Inequalities, second ed., Cambridge University Press, Cambridge, 1952. (1952) Zbl0047.05302MR0046395
- Hartman, P., Ordinary Differential Equations, SIAM, Classics in Applied Mathematics, Wiley, 1964. (1964) Zbl0125.32102MR0171038
- Jaroš, J., Kusano, T., Self-adjoint differential equations and generalized Karamata functions, Bull. T. CXXIX de Acad. Serbe Sci. et Arts, Classe Sci. Mat. Nat. Sci. Math. 29 (2004), 25–60. (2004) MR2099615
- Jaroš, J., Kusano, T., Tanigawa, T., 10.1007/BF03322729, Results Math. 43 (2003), 129–149. (2003) MR1962855DOI10.1007/BF03322729
- Jaroš, J., Kusano, T., Tanigawa, T., 10.1016/j.na.2005.05.045, Nonlinear Anal. 64 (2006), 762–787. (2006) MR2197094DOI10.1016/j.na.2005.05.045
- Kusano, T., Manojlović, J.V., Asymptotic behavior of solutions of half-linear differential equations and generalized Karamata functions, to appear in Georgian Math. J.
- Kusano, T., Manojlović, J.V., Precise asymptotic behavior of regularly varying solutions of second order half-linear differential equations, Electron. J. Qual. Theory Differ. Equ. (2016), 24 pp., paper No. 62. (2016) MR3547438
- Manojlović, J.V., Asymptotic analysis of regularly varying solutions of second-order half-linear differential equations, Kyoto University, RIMS Kokyuroku 2080 (2018), 4–17. (2018)
- Marić, V., Regular Variation and Differential Equations, Lecture Notes in Math., vol. 1726, Springer, 2000. (2000) MR1753584
- Naito, M., Asymptotic behavior of nonoscillatory solutions of half-linear ordinary differential equations, to appear in Arch. Math. (Basel).
- Naito, M., 10.7494/OpMath.2021.41.1.71, Opuscula Math. 41 (2021), 71–94. (2021) DOI10.7494/OpMath.2021.41.1.71
- Řehák, P., Asymptotic formulae for solutions of half-linear differential equations, Appl. Math. Comput. 292 (2017), 165–177. (2017) MR3542549
- Řehák, P., Taddei, V., Solutions of half-linear differential equations in the classes gamma and pi, Differ. Integral Equ. 29 (2016), 683–714. (2016) MR3498873
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.