Denumerable Markov stopping games with risk-sensitive total reward criterion

Manuel A. Torres-Gomar; Rolando Cavazos-Cadena; Hugo Cruz-Suárez

Kybernetika (2024)

  • Issue: 1, page 1-18
  • ISSN: 0023-5954

Abstract

top
This paper studies Markov stopping games with two players on a denumerable state space. At each decision time player II has two actions: to stop the game paying a terminal reward to player I, or to let the system to continue it evolution. In this latter case, player I selects an action affecting the transitions and charges a running reward to player II. The performance of each pair of strategies is measured by the risk-sensitive total expected reward of player I. Under mild continuity and compactness conditions on the components of the model, it is proved that the value of the game satisfies an equilibrium equation, and the existence of a Nash equilibrium is established.

How to cite

top

Torres-Gomar, Manuel A., Cavazos-Cadena, Rolando, and Cruz-Suárez, Hugo. "Denumerable Markov stopping games with risk-sensitive total reward criterion." Kybernetika (2024): 1-18. <http://eudml.org/doc/299378>.

@article{Torres2024,
abstract = {This paper studies Markov stopping games with two players on a denumerable state space. At each decision time player II has two actions: to stop the game paying a terminal reward to player I, or to let the system to continue it evolution. In this latter case, player I selects an action affecting the transitions and charges a running reward to player II. The performance of each pair of strategies is measured by the risk-sensitive total expected reward of player I. Under mild continuity and compactness conditions on the components of the model, it is proved that the value of the game satisfies an equilibrium equation, and the existence of a Nash equilibrium is established.},
author = {Torres-Gomar, Manuel A., Cavazos-Cadena, Rolando, Cruz-Suárez, Hugo},
journal = {Kybernetika},
keywords = {monotone operator; fixed point; equilibrium equation; Nash equilibrium; hitting time; bounded rewards},
language = {eng},
number = {1},
pages = {1-18},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Denumerable Markov stopping games with risk-sensitive total reward criterion},
url = {http://eudml.org/doc/299378},
year = {2024},
}

TY - JOUR
AU - Torres-Gomar, Manuel A.
AU - Cavazos-Cadena, Rolando
AU - Cruz-Suárez, Hugo
TI - Denumerable Markov stopping games with risk-sensitive total reward criterion
JO - Kybernetika
PY - 2024
PB - Institute of Information Theory and Automation AS CR
IS - 1
SP - 1
EP - 18
AB - This paper studies Markov stopping games with two players on a denumerable state space. At each decision time player II has two actions: to stop the game paying a terminal reward to player I, or to let the system to continue it evolution. In this latter case, player I selects an action affecting the transitions and charges a running reward to player II. The performance of each pair of strategies is measured by the risk-sensitive total expected reward of player I. Under mild continuity and compactness conditions on the components of the model, it is proved that the value of the game satisfies an equilibrium equation, and the existence of a Nash equilibrium is established.
LA - eng
KW - monotone operator; fixed point; equilibrium equation; Nash equilibrium; hitting time; bounded rewards
UR - http://eudml.org/doc/299378
ER -

References

top
  1. Alanís-Durán, A., Cavazos-Cadena, R., An optimality system for finite average Markov decision chains under risk-aversion., Kybernetika 48 (2012), 1, 83-104. MR2932929
  2. Bäuerle, N., Rieder, U., Markov Decision Processes with Applications to Finance., Springer-Verlag, New York 2011. Zbl1236.90004MR2808878
  3. Bäuerle, N., Rieder, U., , Math. Oper. Res. 39 (2014), 1, 105-120. MR3173005DOI
  4. Balaji, S., Meyn, S. P., , Stoch. Proc. Appl. 90 (2000), 1, 123-144. MR1787128DOI
  5. Bielecki, T., Hernández-Hernández, D., Pliska, S. R., , Math. Methods Oper. Res. 50 (1999), 167-188. Zbl0959.91029MR1732397DOI
  6. Borkar, V. S., Meyn, S. P., , Math. Oper. Res. 27 (2002), 1, 192-209. MR1886226DOI
  7. Cavazos-Cadena, R., Hernández-Hernández, D., , Appl. Math. Optim. 53 (2006), 101-119. MR2190228DOI
  8. Cavazos-Cadena, R., Hernández-Hernández, D., Nash equilibrium in a class of Markov stopping games., Kybernetika 48 (2012), 1027-1044. MR3086867
  9. Cavazos-Cadena, R., Rodríguez-Gutiérrez, L., Sánchez-Guillermo, D. M., , Kybernetika 57 (2021), 3, 474-492. MR4299459DOI
  10. Cavazos-Cadena, R., Cantú-Sifuentes, M., Cerda-Delgado, I., , Math. Methods Oper. Res. 94 (2021), 319-340. MR4338528DOI
  11. Denardo, E. V., Rothblum, U. G., , SIAM J. Control Optim. 45 (2006), 2, 414-431. MR2246083DOI
  12. Masi, G. B. Di, Stettner, L., , SIAM J. Control Optim. 38 (1999), 1, 61-78. MR1740607DOI
  13. Masi, G. B. Di, Stettner, L., , Systems Control Lett. 40 (2000), 1, 305-321. Zbl0977.93083MR1829070DOI
  14. Masi, G. B. Di, Stettner, L., , SIAM J. Control Optim. 46 (2007), 1, 231-252. MR2299627DOI
  15. Hernández-Lerma, O., Adaptive Markov Control Processes., Springer, New York 1988. Zbl0677.93073MR0983898
  16. Howard, R., Matheson, J., , Management Science 18 (1972), 356-369. MR0292497DOI
  17. Jaśkiewicz, A., , Ann. App. Probab. 17 (2007), 2, 654-675. MR2308338DOI
  18. Kontoyiannis, I., Meyn, S. P., , Ann. App. Probab. 13 (2003), 1, 304-362. MR1952001DOI
  19. López-Rivero, J., Cavazos-Cadena, R., Cruz-Suárez, H., , Kybernetika 58 (2022), 1, 101-122. MR4405949DOI
  20. Martínez-Cortés, V. M., , Kybernetika 57 (2021), 1, 1-14. MR4231853DOI
  21. Pitera, M., Stettner, L., , Math. Meth. Oper. Res. 82 (2016), 2, 265-293. MR3489700DOI
  22. Puterman, M., Markov Decision Processes., Wiley, New York 1994. Zbl1184.90170MR1270015
  23. Sladký, K., Ramsey growth model under uncertainty., In: Proc. 27th International Conference Mathematical Methods in Economics 2009 (H. Brozová, ed.), Kostelec nad Cernými lesy 2009, pp. 296-300. 
  24. Sladký, K., Risk-sensitive Ramsey growth model., In: Proce. 27th International Conference Mathematical Methods in Economics 2010 (M. Houda and J. Friebelová, eds.), Ceské Budějovice 2010, pp. 1-6. 
  25. Sladký, K., , Kybernetika 54 (2018), 1218-1230. MR3902630DOI
  26. Stettner, L., , Math. Meth. Oper. Res. 50 (1999), 3, 463-474. MR1731299DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.