Denumerable Markov stopping games with risk-sensitive total reward criterion
Manuel A. Torres-Gomar; Rolando Cavazos-Cadena; Hugo Cruz-Suárez
Kybernetika (2024)
- Issue: 1, page 1-18
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topTorres-Gomar, Manuel A., Cavazos-Cadena, Rolando, and Cruz-Suárez, Hugo. "Denumerable Markov stopping games with risk-sensitive total reward criterion." Kybernetika (2024): 1-18. <http://eudml.org/doc/299378>.
@article{Torres2024,
abstract = {This paper studies Markov stopping games with two players on a denumerable state space. At each decision time player II has two actions: to stop the game paying a terminal reward to player I, or to let the system to continue it evolution. In this latter case, player I selects an action affecting the transitions and charges a running reward to player II. The performance of each pair of strategies is measured by the risk-sensitive total expected reward of player I. Under mild continuity and compactness conditions on the components of the model, it is proved that the value of the game satisfies an equilibrium equation, and the existence of a Nash equilibrium is established.},
author = {Torres-Gomar, Manuel A., Cavazos-Cadena, Rolando, Cruz-Suárez, Hugo},
journal = {Kybernetika},
keywords = {monotone operator; fixed point; equilibrium equation; Nash equilibrium; hitting time; bounded rewards},
language = {eng},
number = {1},
pages = {1-18},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Denumerable Markov stopping games with risk-sensitive total reward criterion},
url = {http://eudml.org/doc/299378},
year = {2024},
}
TY - JOUR
AU - Torres-Gomar, Manuel A.
AU - Cavazos-Cadena, Rolando
AU - Cruz-Suárez, Hugo
TI - Denumerable Markov stopping games with risk-sensitive total reward criterion
JO - Kybernetika
PY - 2024
PB - Institute of Information Theory and Automation AS CR
IS - 1
SP - 1
EP - 18
AB - This paper studies Markov stopping games with two players on a denumerable state space. At each decision time player II has two actions: to stop the game paying a terminal reward to player I, or to let the system to continue it evolution. In this latter case, player I selects an action affecting the transitions and charges a running reward to player II. The performance of each pair of strategies is measured by the risk-sensitive total expected reward of player I. Under mild continuity and compactness conditions on the components of the model, it is proved that the value of the game satisfies an equilibrium equation, and the existence of a Nash equilibrium is established.
LA - eng
KW - monotone operator; fixed point; equilibrium equation; Nash equilibrium; hitting time; bounded rewards
UR - http://eudml.org/doc/299378
ER -
References
top- Alanís-Durán, A., Cavazos-Cadena, R., An optimality system for finite average Markov decision chains under risk-aversion., Kybernetika 48 (2012), 1, 83-104. MR2932929
- Bäuerle, N., Rieder, U., Markov Decision Processes with Applications to Finance., Springer-Verlag, New York 2011. Zbl1236.90004MR2808878
- Bäuerle, N., Rieder, U., , Math. Oper. Res. 39 (2014), 1, 105-120. MR3173005DOI
- Balaji, S., Meyn, S. P., , Stoch. Proc. Appl. 90 (2000), 1, 123-144. MR1787128DOI
- Bielecki, T., Hernández-Hernández, D., Pliska, S. R., , Math. Methods Oper. Res. 50 (1999), 167-188. Zbl0959.91029MR1732397DOI
- Borkar, V. S., Meyn, S. P., , Math. Oper. Res. 27 (2002), 1, 192-209. MR1886226DOI
- Cavazos-Cadena, R., Hernández-Hernández, D., , Appl. Math. Optim. 53 (2006), 101-119. MR2190228DOI
- Cavazos-Cadena, R., Hernández-Hernández, D., Nash equilibrium in a class of Markov stopping games., Kybernetika 48 (2012), 1027-1044. MR3086867
- Cavazos-Cadena, R., Rodríguez-Gutiérrez, L., Sánchez-Guillermo, D. M., , Kybernetika 57 (2021), 3, 474-492. MR4299459DOI
- Cavazos-Cadena, R., Cantú-Sifuentes, M., Cerda-Delgado, I., , Math. Methods Oper. Res. 94 (2021), 319-340. MR4338528DOI
- Denardo, E. V., Rothblum, U. G., , SIAM J. Control Optim. 45 (2006), 2, 414-431. MR2246083DOI
- Masi, G. B. Di, Stettner, L., , SIAM J. Control Optim. 38 (1999), 1, 61-78. MR1740607DOI
- Masi, G. B. Di, Stettner, L., , Systems Control Lett. 40 (2000), 1, 305-321. Zbl0977.93083MR1829070DOI
- Masi, G. B. Di, Stettner, L., , SIAM J. Control Optim. 46 (2007), 1, 231-252. MR2299627DOI
- Hernández-Lerma, O., Adaptive Markov Control Processes., Springer, New York 1988. Zbl0677.93073MR0983898
- Howard, R., Matheson, J., , Management Science 18 (1972), 356-369. MR0292497DOI
- Jaśkiewicz, A., , Ann. App. Probab. 17 (2007), 2, 654-675. MR2308338DOI
- Kontoyiannis, I., Meyn, S. P., , Ann. App. Probab. 13 (2003), 1, 304-362. MR1952001DOI
- López-Rivero, J., Cavazos-Cadena, R., Cruz-Suárez, H., , Kybernetika 58 (2022), 1, 101-122. MR4405949DOI
- Martínez-Cortés, V. M., , Kybernetika 57 (2021), 1, 1-14. MR4231853DOI
- Pitera, M., Stettner, L., , Math. Meth. Oper. Res. 82 (2016), 2, 265-293. MR3489700DOI
- Puterman, M., Markov Decision Processes., Wiley, New York 1994. Zbl1184.90170MR1270015
- Sladký, K., Ramsey growth model under uncertainty., In: Proc. 27th International Conference Mathematical Methods in Economics 2009 (H. Brozová, ed.), Kostelec nad Cernými lesy 2009, pp. 296-300.
- Sladký, K., Risk-sensitive Ramsey growth model., In: Proce. 27th International Conference Mathematical Methods in Economics 2010 (M. Houda and J. Friebelová, eds.), Ceské Budějovice 2010, pp. 1-6.
- Sladký, K., , Kybernetika 54 (2018), 1218-1230. MR3902630DOI
- Stettner, L., , Math. Meth. Oper. Res. 50 (1999), 3, 463-474. MR1731299DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.