On locales whose countably compact sublocales have compact closure

Themba Dube

Mathematica Bohemica (2023)

  • Volume: 148, Issue: 4, page 481-500
  • ISSN: 0862-7959

Abstract

top
Among completely regular locales, we characterize those that have the feature described in the title. They are, of course, localic analogues of what are called cl -isocompact spaces. They have been considered in T. Dube, I. Naidoo, C. N. Ncube (2014), so here we give new characterizations that do not appear in this reference.

How to cite

top

Dube, Themba. "On locales whose countably compact sublocales have compact closure." Mathematica Bohemica 148.4 (2023): 481-500. <http://eudml.org/doc/299386>.

@article{Dube2023,
abstract = {Among completely regular locales, we characterize those that have the feature described in the title. They are, of course, localic analogues of what are called $\{\rm cl\}$-isocompact spaces. They have been considered in T. Dube, I. Naidoo, C. N. Ncube (2014), so here we give new characterizations that do not appear in this reference.},
author = {Dube, Themba},
journal = {Mathematica Bohemica},
keywords = {frame; locale; isocompact; $\{\rm cl\}$-isocompact; fully $\{\rm cl\}$-isocompact},
language = {eng},
number = {4},
pages = {481-500},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On locales whose countably compact sublocales have compact closure},
url = {http://eudml.org/doc/299386},
volume = {148},
year = {2023},
}

TY - JOUR
AU - Dube, Themba
TI - On locales whose countably compact sublocales have compact closure
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 4
SP - 481
EP - 500
AB - Among completely regular locales, we characterize those that have the feature described in the title. They are, of course, localic analogues of what are called ${\rm cl}$-isocompact spaces. They have been considered in T. Dube, I. Naidoo, C. N. Ncube (2014), so here we give new characterizations that do not appear in this reference.
LA - eng
KW - frame; locale; isocompact; ${\rm cl}$-isocompact; fully ${\rm cl}$-isocompact
UR - http://eudml.org/doc/299386
ER -

References

top
  1. Bacon, P., 10.2140/pjm.1970.32.587, Pac. J. Math. 32 (1970), 587-592 9999DOI99999 10.2140/pjm.1970.32.587 . (1970) Zbl0175.49503MR0257975DOI10.2140/pjm.1970.32.587
  2. Banaschewski, B., Gilmour, C., Pseudocompactness and the cozero part of a frame, Commentat. Math. Univ. Carol. 37 (1996), 577-587. (1996) Zbl0881.54018MR1426922
  3. Banaschewski, B., Gilmour, C., Realcompactness and the cozero part of a frame, Appl. Categ. Struct. 9 (2001), 395-417 9999DOI99999 10.1023/A:1011225712426 . (2001) Zbl0978.54019MR1847309
  4. Dube, T., 10.1515/gmj-2019-2027, Georgian Math. J. 28 (2021), 59-72. (2021) Zbl07394014MR4234116DOI10.1515/gmj-2019-2027
  5. Dube, T., Iliadis, S., Mill, J. van, Naidoo, I., A pseudocompact completely regular frame which is not spatial, Order 31 (2014), 115-120 9999DOI99999 10.1007/s11083-013-9291-7 . (2014) Zbl1316.06010MR3167759
  6. Dube, T., Naidoo, I., Ncube, C. N., Isocompactness in the category of locales, Appl. Categ. Struct. 22 (2014), 727-739 9999DOI99999 10.1007/s10485-013-9341-8 . (2014) Zbl1323.06008MR3275271
  7. García-Ferreira, S., Sanchis, M., Projection maps and isocompactness, Quest. Answers Gen. Topology 19 (2001), 165-176. (2001) Zbl1016.54016MR1854730
  8. García, J. Gutiérrez, Picado, J., 10.1016/j.jpaa.2013.10.002, J. Pure Appl. Algebra 218 (2014), 784-803. (2014) Zbl1296.06006MR3149635DOI10.1016/j.jpaa.2013.10.002
  9. Hasegawa, M., On products of isocompact spaces, Mem. Osaka Kyoiku Univ. III Natur. Sci. Appl. Sci. 21 (1972), 213-216. (1972) MR0328864
  10. Isbell, J., Graduation and dimension in locales, Aspects of Topology London Mathematical Society Lecture Note Series 93. Cambridge University Press, Cambridge (1985), 195-210. (1985) Zbl0555.54020MR0787829
  11. Isbell, J., Kříž, I., Pultr, A., Rosický, J., 10.1007/BFb0081357, Categorical Algebra and its Applications Lecture Notes in Mathematics 1348. Springer, Berlin (1988), 154-172. (1988) Zbl0661.22003MR0975968DOI10.1007/BFb0081357
  12. Johnstone, P. T., Stone Spaces, Cambridge Studies in Advanced Mathematics 3. Cambridge University Press, Cambridge (1982). (1982) Zbl0499.54001MR0698074
  13. Picado, J., Pultr, A., 10.1007/978-3-0348-0154-6, Frontiers in Mathematics. Springer, Berlin (2012). (2012) Zbl1231.06018MR2868166DOI10.1007/978-3-0348-0154-6
  14. Picado, J., Pultr, A., Tozzi, A., Locales, Categorical Foundations: Special Topics in Order, Topology, Algebra and Sheaf Theory Encyclopedia of Mathematics and Its Applications 97. Cambridge University Press, Cambridge (2004), 49-101. (2004) Zbl1080.06010MR2056581
  15. Plewe, T., 10.1016/S0022-4049(01)00100-1, J. Pure Appl. Algebra 168 (2002), 309-326. (2002) Zbl1004.18003MR1887161DOI10.1016/S0022-4049(01)00100-1
  16. Sakai, M., 10.21099/tkbjm/1496160049, Tsukuba J. Math. 8 (1984), 377-382. (1984) Zbl0558.54015MR0767968DOI10.21099/tkbjm/1496160049
  17. Walters-Wayland, J. L., Completeness and Nearly Fine Uniform Frames: Doctoral Thesis, Catholic University of Louvain, Louvain (1995). (1995) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.