On locales whose countably compact sublocales have compact closure
Mathematica Bohemica (2023)
- Volume: 148, Issue: 4, page 481-500
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topDube, Themba. "On locales whose countably compact sublocales have compact closure." Mathematica Bohemica 148.4 (2023): 481-500. <http://eudml.org/doc/299386>.
@article{Dube2023,
abstract = {Among completely regular locales, we characterize those that have the feature described in the title. They are, of course, localic analogues of what are called $\{\rm cl\}$-isocompact spaces. They have been considered in T. Dube, I. Naidoo, C. N. Ncube (2014), so here we give new characterizations that do not appear in this reference.},
author = {Dube, Themba},
journal = {Mathematica Bohemica},
keywords = {frame; locale; isocompact; $\{\rm cl\}$-isocompact; fully $\{\rm cl\}$-isocompact},
language = {eng},
number = {4},
pages = {481-500},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On locales whose countably compact sublocales have compact closure},
url = {http://eudml.org/doc/299386},
volume = {148},
year = {2023},
}
TY - JOUR
AU - Dube, Themba
TI - On locales whose countably compact sublocales have compact closure
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 4
SP - 481
EP - 500
AB - Among completely regular locales, we characterize those that have the feature described in the title. They are, of course, localic analogues of what are called ${\rm cl}$-isocompact spaces. They have been considered in T. Dube, I. Naidoo, C. N. Ncube (2014), so here we give new characterizations that do not appear in this reference.
LA - eng
KW - frame; locale; isocompact; ${\rm cl}$-isocompact; fully ${\rm cl}$-isocompact
UR - http://eudml.org/doc/299386
ER -
References
top- Bacon, P., 10.2140/pjm.1970.32.587, Pac. J. Math. 32 (1970), 587-592 9999DOI99999 10.2140/pjm.1970.32.587 . (1970) Zbl0175.49503MR0257975DOI10.2140/pjm.1970.32.587
- Banaschewski, B., Gilmour, C., Pseudocompactness and the cozero part of a frame, Commentat. Math. Univ. Carol. 37 (1996), 577-587. (1996) Zbl0881.54018MR1426922
- Banaschewski, B., Gilmour, C., Realcompactness and the cozero part of a frame, Appl. Categ. Struct. 9 (2001), 395-417 9999DOI99999 10.1023/A:1011225712426 . (2001) Zbl0978.54019MR1847309
- Dube, T., 10.1515/gmj-2019-2027, Georgian Math. J. 28 (2021), 59-72. (2021) Zbl07394014MR4234116DOI10.1515/gmj-2019-2027
- Dube, T., Iliadis, S., Mill, J. van, Naidoo, I., A pseudocompact completely regular frame which is not spatial, Order 31 (2014), 115-120 9999DOI99999 10.1007/s11083-013-9291-7 . (2014) Zbl1316.06010MR3167759
- Dube, T., Naidoo, I., Ncube, C. N., Isocompactness in the category of locales, Appl. Categ. Struct. 22 (2014), 727-739 9999DOI99999 10.1007/s10485-013-9341-8 . (2014) Zbl1323.06008MR3275271
- García-Ferreira, S., Sanchis, M., Projection maps and isocompactness, Quest. Answers Gen. Topology 19 (2001), 165-176. (2001) Zbl1016.54016MR1854730
- García, J. Gutiérrez, Picado, J., 10.1016/j.jpaa.2013.10.002, J. Pure Appl. Algebra 218 (2014), 784-803. (2014) Zbl1296.06006MR3149635DOI10.1016/j.jpaa.2013.10.002
- Hasegawa, M., On products of isocompact spaces, Mem. Osaka Kyoiku Univ. III Natur. Sci. Appl. Sci. 21 (1972), 213-216. (1972) MR0328864
- Isbell, J., Graduation and dimension in locales, Aspects of Topology London Mathematical Society Lecture Note Series 93. Cambridge University Press, Cambridge (1985), 195-210. (1985) Zbl0555.54020MR0787829
- Isbell, J., Kříž, I., Pultr, A., Rosický, J., 10.1007/BFb0081357, Categorical Algebra and its Applications Lecture Notes in Mathematics 1348. Springer, Berlin (1988), 154-172. (1988) Zbl0661.22003MR0975968DOI10.1007/BFb0081357
- Johnstone, P. T., Stone Spaces, Cambridge Studies in Advanced Mathematics 3. Cambridge University Press, Cambridge (1982). (1982) Zbl0499.54001MR0698074
- Picado, J., Pultr, A., 10.1007/978-3-0348-0154-6, Frontiers in Mathematics. Springer, Berlin (2012). (2012) Zbl1231.06018MR2868166DOI10.1007/978-3-0348-0154-6
- Picado, J., Pultr, A., Tozzi, A., Locales, Categorical Foundations: Special Topics in Order, Topology, Algebra and Sheaf Theory Encyclopedia of Mathematics and Its Applications 97. Cambridge University Press, Cambridge (2004), 49-101. (2004) Zbl1080.06010MR2056581
- Plewe, T., 10.1016/S0022-4049(01)00100-1, J. Pure Appl. Algebra 168 (2002), 309-326. (2002) Zbl1004.18003MR1887161DOI10.1016/S0022-4049(01)00100-1
- Sakai, M., 10.21099/tkbjm/1496160049, Tsukuba J. Math. 8 (1984), 377-382. (1984) Zbl0558.54015MR0767968DOI10.21099/tkbjm/1496160049
- Walters-Wayland, J. L., Completeness and Nearly Fine Uniform Frames: Doctoral Thesis, Catholic University of Louvain, Louvain (1995). (1995)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.