Pseudocompactness and the cozero part of a frame
Bernhard Banaschewski; Christopher Gilmour
Commentationes Mathematicae Universitatis Carolinae (1996)
- Volume: 37, Issue: 3, page 577-587
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBanaschewski, Bernhard, and Gilmour, Christopher. "Pseudocompactness and the cozero part of a frame." Commentationes Mathematicae Universitatis Carolinae 37.3 (1996): 577-587. <http://eudml.org/doc/247922>.
@article{Banaschewski1996,
abstract = {A characterization of the cozero elements of a frame, without reference to the reals, is given and is used to obtain a characterization of pseudocompactness also independent of the reals. Applications are made to the congruence frame of a $\sigma $-frame and to Alexandroff spaces.},
author = {Banaschewski, Bernhard, Gilmour, Christopher},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {pseudocompact frames; $\sigma $-frames; cozero elements and Alexandroff spaces; pseudocompact frames; -frames; cozero elements and Alexandroff spaces},
language = {eng},
number = {3},
pages = {577-587},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Pseudocompactness and the cozero part of a frame},
url = {http://eudml.org/doc/247922},
volume = {37},
year = {1996},
}
TY - JOUR
AU - Banaschewski, Bernhard
AU - Gilmour, Christopher
TI - Pseudocompactness and the cozero part of a frame
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1996
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 37
IS - 3
SP - 577
EP - 587
AB - A characterization of the cozero elements of a frame, without reference to the reals, is given and is used to obtain a characterization of pseudocompactness also independent of the reals. Applications are made to the congruence frame of a $\sigma $-frame and to Alexandroff spaces.
LA - eng
KW - pseudocompact frames; $\sigma $-frames; cozero elements and Alexandroff spaces; pseudocompact frames; -frames; cozero elements and Alexandroff spaces
UR - http://eudml.org/doc/247922
ER -
References
top- Baboolal D., Banaschewski B., Compactification and local connectedness of frames, J. Pure Appl. Algebra 70 (1991), 3-16. (1991) Zbl0722.54031MR1100502
- Banaschewski B., The frame envelope of a -frame, Quaestiones Math. 16.1 (1993), 51-60. (1993) Zbl0779.06009MR1217474
- Banaschewski B., Frith J., Gilmour C., On the congruence lattice of a frame, Pacific J. Math. 130.2 (1987), 209-213. (1987) Zbl0637.06006MR0914098
- Banaschewski B., Gilmour C., Stone-Čech compactification and dimension theory for regular -frames, J. London Math. Soc. (2) No.127, 39, part 1 (1989), 1-8. Zbl0675.06005MR0989914
- Banaschewski B., Mulvey C., Stone-Čech compactification of locales I, Houston J. of Math. 6.3 (1980), 301-312. (1980) Zbl0473.54026MR0597771
- Banaschewski B., Mulvey C., Stone-Čech compactification of locales II, J. Pure Appl. Algebra 33 (1984), 107-122. (1984) Zbl0549.54017MR0754950
- Banaschewski B., Pultr A., Paracompactness revisited, Applied Categorical Structures 1 (1993), 181-190. (1993) Zbl0797.54032MR1245799
- Gilmour C., Realcompact Alexandroff spaces and regular -frames, PhD Thesis, University of Cape Town, 1981. Zbl0601.54019
- Gilmour C., Realcompact Alexandroff spaces and regular -frames, Math. Proc. Cambridge Philos. Soc. 96 (1984), 73-79. (1984) MR0743702
- Gordon H., Rings of functions determined by zero-sets, Pacific J. Math. 36 (1971), 133-157. (1971) Zbl0185.38803MR0320996
- Johnstone P.T., Stone Spaces, Cambridge Studies in Advanced Math. 3, Cambridge Univ. Press, 1982. Zbl0586.54001MR0698074
- Kennison J., -Pseudocompactness, Trans. Amer. Math. Soc. 104 (1962), 436-442. (1962) Zbl0111.35004MR0145478
- Madden J., -Frames, J. Pure Appl. Algebra 70 (1991), 107-127. (1991) Zbl0721.06006MR1100510
- Madden J., Vermeer H., Lindelöf locales and realcompactness, Math. Proc. Camb. Phil. Soc. 99 (1986), 473-480. (1986) Zbl0603.54021MR0830360
- Marcus N., Realcompactifications of frames, MSc Thesis, University of Cape Town, 1994.
- Reynolds G., On the spectrum of a real representable ring, Applications of Sheaves, Springer LNM 753 (1977), 595-611. Zbl0426.18002MR0555563
- Reynolds G., Alexandroff algebras and complete regularity, Proc. Amer. Math. Soc. 76 (1979), 322-326. (1979) Zbl0416.54015MR0537098
- Walters J., Uniform sigma frames and the cozero part of uniform frames, MSc Thesis, University of Cape Town, 1990.
- Walters J., Compactifications and uniformities on sigma frames, Comment. Math. Univ. Carolinae 32.1 (1991), 189-198. (1991) Zbl0735.54014MR1118301
Citations in EuDML Documents
top- Themba Dube, Contracting the socle in rings of continuous functions
- Themba Dube, On locales whose countably compact sublocales have compact closure
- A. A. Estaji, A. Karimi Feizabadi, M. Abedi, Strongly fixed ideals in and compact frames
- Ali Akbar Estaji, Maryam Taha, The clean elements of the ring
- Joanne L. Walters-Wayland, Metric-fine uniform frames
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.