A new method based on least-squares support vector regression for solving optimal control problems
Mitra Bolhassani; Hassan Dana Mazraeh; Kourosh Parand
Kybernetika (2024)
- Issue: 4, page 513-534
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topBolhassani, Mitra, Dana Mazraeh, Hassan, and Parand, Kourosh. "A new method based on least-squares support vector regression for solving optimal control problems." Kybernetika (2024): 513-534. <http://eudml.org/doc/299390>.
@article{Bolhassani2024,
abstract = {In this paper, a new application of the Least Squares Support Vector Regression (LS-SVR) with Legendre basis functions as mapping functions to a higher dimensional future space is considered for solving optimal control problems. At the final stage of LS-SVR, an optimization problem is formulated and solved using Maple optimization packages. The accuracy of the method are illustrated through numerical examples, including nonlinear optimal control problems. The results demonstrate that the proposed method is capable of solving optimal control problems with high accuracy.},
author = {Bolhassani, Mitra, Dana Mazraeh, Hassan, Parand, Kourosh},
journal = {Kybernetika},
keywords = {Least squares support vector machines; Optimal control problems; Legendre orthogonal polynomials; Regression; Artificial intelligence},
language = {eng},
number = {4},
pages = {513-534},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A new method based on least-squares support vector regression for solving optimal control problems},
url = {http://eudml.org/doc/299390},
year = {2024},
}
TY - JOUR
AU - Bolhassani, Mitra
AU - Dana Mazraeh, Hassan
AU - Parand, Kourosh
TI - A new method based on least-squares support vector regression for solving optimal control problems
JO - Kybernetika
PY - 2024
PB - Institute of Information Theory and Automation AS CR
IS - 4
SP - 513
EP - 534
AB - In this paper, a new application of the Least Squares Support Vector Regression (LS-SVR) with Legendre basis functions as mapping functions to a higher dimensional future space is considered for solving optimal control problems. At the final stage of LS-SVR, an optimization problem is formulated and solved using Maple optimization packages. The accuracy of the method are illustrated through numerical examples, including nonlinear optimal control problems. The results demonstrate that the proposed method is capable of solving optimal control problems with high accuracy.
LA - eng
KW - Least squares support vector machines; Optimal control problems; Legendre orthogonal polynomials; Regression; Artificial intelligence
UR - http://eudml.org/doc/299390
ER -
References
top- Amman, H. M., Kendrick, D. A., DOI
- Betts, J. T., Survey of numerical methods for trajectory optimization., J. Guidance Control Dynamics (1998), 98124-2207. Zbl1158.49303
- Bock, H. G., Plitt, K. J., , In: IFAC 9th congress 1984, pp. 1603-1608. DOI
- Cortes, C., Vapnik, V., , Mach. Learn 20 (1995), 3, 273-297. DOI
- Elnagar, G. N., Razzaghi, M., 10.1002/(SICI)1099-1514(199705/06)18:3<227::AID-OCA598>3.0.CO;2-A, Opt. Control Appl. Methods 8 (1997), 3, 227-235. MR1456947DOI10.1002/(SICI)1099-1514(199705/06)18:3<227::AID-OCA598>3.0.CO;2-A
- Kafash, B., Delavarkhalafi, A., Karbassi, S. M., , Scientia Iranica 19 (2012), 3, 795-805. DOI
- Kang, S., Wang, J., Li, C., Shan, J., , J. Franklin Inst. 355 (2018), 16, 8027-8048. MR3864034DOI
- Kirk, D. E., Optimal Control Theory., Prentice-Hall, Englewood Cliffs 1970.
- Latifi, S., Parand, K., Delkhosh, M., Generalized Lagrange-Jacobi-Gauss-Radau collocation method for solving a nonlinear optimal control problem with the classical diffusion equation., European Phys. J. Plus, 2020.
- Loxton, R. C., Teo, K. L., Rehbock, V., Ling, W. K., , Automatica J. IFAC 45 (2009), 4, 973-980. MR2535357DOI
- Marzban, H. R., Razzaghi, M., , J. Franklin Inst. 341 (2004), 279-293. MR2054477DOI
- Mohammadi, K. M., Jani, M., Parand, K., A least squares support vector regression for anisotropic diffusion filtering., arXiv preprint arXiv, 2022.
- Naevdal, E., , J. Econom. Educ. 34 (2003), 2, 99-122. DOI
- Naraigh, L. O., Byrne, A., , Math. Biosci 330 (2020), 108496. MR4167193DOI
- Parand, K., Latifi, S., Delkhosh, M., Moayeri, M. M., Generalized Lagrangian Jacobi-Gauss-Radau collocation method for solving a nonlinear 2-D optimal control problem with the classical diffusion equation., arXiv preprint arXiv, 2018.
- Parand, K., Razzaghi, M., Sahleh, R., Jani, M., Least squares support vector regression for solving Volterra integral equations
- Pakniyat, A., Parand, K., Jani, M., Least squares support vector regression for differential equations on unbounded domains., Chaos Solitons Fractals, 2021. MR4299700
- Pontryagin, L. S., Boltyanskii, V., Gamkrelidze, R., Mischenko, E., The Mathematical Theory of Optimal Processes., Wiley Interscience, 1962. MR0166037
- Rabiei, K., Parand, K., 10.1007/s00366-018-0688-1, Engrg. Comput. 36 (2020), 1, 115-125. DOI10.1007/s00366-018-0688-1
- Razzaghi, M., Nazarzadeh, J., Nikravesh, K. Y., 10.1155/S1024123X97000653, Math.Problems Engrg. 3 (1998), 6, 503-515. DOI10.1155/S1024123X97000653
- Rifkin, R., Yeo, G., Poggio, T., Regularized least-squares classification., Nato Sci. Ser. Sub Ser. III Comput. Syst. Sci. 190 (2003), 131-154.
- Schwartz, A., Theory and Implementation of Numerical Mathod Based on Runge-Kutta Integration for Solving Optimal Control Problems., Ph.D. Thesis, University of California, 1996. MR1395832
- Shen, J., Tang, T., Wang, L-L., Spectral Methods: Algorithms, Analysis and Applications., Springer Science and Business Media, 2011. MR2867779
- Suykens, J. A., Vandewalle, J., , Neural Process. Lett. 9 (1999), 3, 293-300. DOI
- Suykens, J. A. K., Gestel, T. Van, Brabanter, J. De, Moor, B. De, Vandewalle, J., Least Squares Support Vector Machines., World Scientific, 2002.
- Teo, K. L., Goh, C. J., Wong, K. H., Unified Computational Approach to Optimal Control Problems., Longmann Scientific and Technical, 1991. MR1153024
- Sabermahani, S., Ordokhani, Y., Rabiei, K., Razzaghi, M., , J. Vibration Control 29 (2023), 15.-16, 3796-3808. MR4617773DOI
- Rabiei, K., Razzaghi, M., , J. Vibration Control 29 (2023), 7-8, 1806-1819. MR4560887DOI
- Heydari, M. H., Razzaghi, M., Avazzadeh, Z., , Vibration Control 29 (2023), 5-6, 1164-1175. MR4548331DOI
- Heydari, M. H., Tavakoli, R., Razzagh, M., , Int. J. Systems Sci. 53 (2022), 12, 2694-2708. MR4496198DOI
- Ghanbari, G., Razzaghi, M., , Int. J. Systems Sci. 53 (2022), 4, 778-792. MR4385669DOI
- Heydari, M. H., Razzaghi, M., 10.1080/00207721.2021.1947411, Int. J. Systems Sci. 53 (2022), 2, 240-252. MR4369004DOI10.1080/00207721.2021.1947411
- Lakestani, M., Edrisi-Tabrizi, Y., Razzaghi, M., , Trans. Inst. Measurement Control 43 (2021), 11, 2425-2437. DOI
- Dehestani, H., Ordokhani, Y., Razzaghi, M., , Int. J. Systems Sci. 51 (2020), 6, 1032-1052. MR4095675DOI
- Mashayekhi, S., Razzaghi, M., 10.1177/1077546316665956, J. Vibration Control 24 (2018), 9, 1621-1631. MR3785609DOI10.1177/1077546316665956
- Mohammed, J. K., Khudair, A. R., , J. Partial Differential Equations Appl. Math. 7 (2023), 9, 100507. DOI
- Hassani, H., Machado, J. A. Tenreiro, Avazzadeh, Z., Naraghirad, E., Dahaghin, M. Sh., 10.1007/s10915-020-01213-0, J. Scient. Comput. 83 (2020), 2, 1-21. MR4091557DOI10.1007/s10915-020-01213-0
- Suykens, J. A. K., Vandewalle, J., Moor, B. D., Optimal control by least squares support vector machines., J. Partial Differential Equations Appl. Math. 14 (2001), 1, 23-35.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.