A new method based on least-squares support vector regression for solving optimal control problems

Mitra Bolhassani; Hassan Dana Mazraeh; Kourosh Parand

Kybernetika (2024)

  • Issue: 4, page 513-534
  • ISSN: 0023-5954

Abstract

top
In this paper, a new application of the Least Squares Support Vector Regression (LS-SVR) with Legendre basis functions as mapping functions to a higher dimensional future space is considered for solving optimal control problems. At the final stage of LS-SVR, an optimization problem is formulated and solved using Maple optimization packages. The accuracy of the method are illustrated through numerical examples, including nonlinear optimal control problems. The results demonstrate that the proposed method is capable of solving optimal control problems with high accuracy.

How to cite

top

Bolhassani, Mitra, Dana Mazraeh, Hassan, and Parand, Kourosh. "A new method based on least-squares support vector regression for solving optimal control problems." Kybernetika (2024): 513-534. <http://eudml.org/doc/299390>.

@article{Bolhassani2024,
abstract = {In this paper, a new application of the Least Squares Support Vector Regression (LS-SVR) with Legendre basis functions as mapping functions to a higher dimensional future space is considered for solving optimal control problems. At the final stage of LS-SVR, an optimization problem is formulated and solved using Maple optimization packages. The accuracy of the method are illustrated through numerical examples, including nonlinear optimal control problems. The results demonstrate that the proposed method is capable of solving optimal control problems with high accuracy.},
author = {Bolhassani, Mitra, Dana Mazraeh, Hassan, Parand, Kourosh},
journal = {Kybernetika},
keywords = {Least squares support vector machines; Optimal control problems; Legendre orthogonal polynomials; Regression; Artificial intelligence},
language = {eng},
number = {4},
pages = {513-534},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A new method based on least-squares support vector regression for solving optimal control problems},
url = {http://eudml.org/doc/299390},
year = {2024},
}

TY - JOUR
AU - Bolhassani, Mitra
AU - Dana Mazraeh, Hassan
AU - Parand, Kourosh
TI - A new method based on least-squares support vector regression for solving optimal control problems
JO - Kybernetika
PY - 2024
PB - Institute of Information Theory and Automation AS CR
IS - 4
SP - 513
EP - 534
AB - In this paper, a new application of the Least Squares Support Vector Regression (LS-SVR) with Legendre basis functions as mapping functions to a higher dimensional future space is considered for solving optimal control problems. At the final stage of LS-SVR, an optimization problem is formulated and solved using Maple optimization packages. The accuracy of the method are illustrated through numerical examples, including nonlinear optimal control problems. The results demonstrate that the proposed method is capable of solving optimal control problems with high accuracy.
LA - eng
KW - Least squares support vector machines; Optimal control problems; Legendre orthogonal polynomials; Regression; Artificial intelligence
UR - http://eudml.org/doc/299390
ER -

References

top
  1. Amman, H. M., Kendrick, D. A.,  DOI
  2. Betts, J. T., Survey of numerical methods for trajectory optimization., J. Guidance Control Dynamics (1998), 98124-2207. Zbl1158.49303
  3. Bock, H. G., Plitt, K. J., , In: IFAC 9th congress 1984, pp. 1603-1608. DOI
  4. Cortes, C., Vapnik, V., , Mach. Learn 20 (1995), 3, 273-297. DOI
  5. Elnagar, G. N., Razzaghi, M., 10.1002/(SICI)1099-1514(199705/06)18:3<227::AID-OCA598>3.0.CO;2-A, Opt. Control Appl. Methods 8 (1997), 3, 227-235. MR1456947DOI10.1002/(SICI)1099-1514(199705/06)18:3<227::AID-OCA598>3.0.CO;2-A
  6. Kafash, B., Delavarkhalafi, A., Karbassi, S. M., , Scientia Iranica 19 (2012), 3, 795-805. DOI
  7. Kang, S., Wang, J., Li, C., Shan, J., , J. Franklin Inst. 355 (2018), 16, 8027-8048. MR3864034DOI
  8. Kirk, D. E., Optimal Control Theory., Prentice-Hall, Englewood Cliffs 1970. 
  9. Latifi, S., Parand, K., Delkhosh, M., Generalized Lagrange-Jacobi-Gauss-Radau collocation method for solving a nonlinear optimal control problem with the classical diffusion equation., European Phys. J. Plus, 2020. 
  10. Loxton, R. C., Teo, K. L., Rehbock, V., Ling, W. K., , Automatica J. IFAC 45 (2009), 4, 973-980. MR2535357DOI
  11. Marzban, H. R., Razzaghi, M., , J. Franklin Inst. 341 (2004), 279-293. MR2054477DOI
  12. Mohammadi, K. M., Jani, M., Parand, K., A least squares support vector regression for anisotropic diffusion filtering., arXiv preprint arXiv, 2022. 
  13. Naevdal, E., , J. Econom. Educ. 34 (2003), 2, 99-122. DOI
  14. Naraigh, L. O., Byrne, A., , Math. Biosci 330 (2020), 108496. MR4167193DOI
  15. Parand, K., Latifi, S., Delkhosh, M., Moayeri, M. M., Generalized Lagrangian Jacobi-Gauss-Radau collocation method for solving a nonlinear 2-D optimal control problem with the classical diffusion equation., arXiv preprint arXiv, 2018. 
  16. Parand, K., Razzaghi, M., Sahleh, R., Jani, M., Least squares support vector regression for solving Volterra integral equations 
  17. Pakniyat, A., Parand, K., Jani, M., Least squares support vector regression for differential equations on unbounded domains., Chaos Solitons Fractals, 2021. MR4299700
  18. Pontryagin, L. S., Boltyanskii, V., Gamkrelidze, R., Mischenko, E., The Mathematical Theory of Optimal Processes., Wiley Interscience, 1962. MR0166037
  19. Rabiei, K., Parand, K., 10.1007/s00366-018-0688-1, Engrg. Comput. 36 (2020), 1, 115-125. DOI10.1007/s00366-018-0688-1
  20. Razzaghi, M., Nazarzadeh, J., Nikravesh, K. Y., 10.1155/S1024123X97000653, Math.Problems Engrg. 3 (1998), 6, 503-515. DOI10.1155/S1024123X97000653
  21. Rifkin, R., Yeo, G., Poggio, T., Regularized least-squares classification., Nato Sci. Ser. Sub Ser. III Comput. Syst. Sci. 190 (2003), 131-154. 
  22. Schwartz, A., Theory and Implementation of Numerical Mathod Based on Runge-Kutta Integration for Solving Optimal Control Problems., Ph.D. Thesis, University of California, 1996. MR1395832
  23. Shen, J., Tang, T., Wang, L-L., Spectral Methods: Algorithms, Analysis and Applications., Springer Science and Business Media, 2011. MR2867779
  24. Suykens, J. A., Vandewalle, J., , Neural Process. Lett. 9 (1999), 3, 293-300. DOI
  25. Suykens, J. A. K., Gestel, T. Van, Brabanter, J. De, Moor, B. De, Vandewalle, J., Least Squares Support Vector Machines., World Scientific, 2002. 
  26. Teo, K. L., Goh, C. J., Wong, K. H., Unified Computational Approach to Optimal Control Problems., Longmann Scientific and Technical, 1991. MR1153024
  27. Sabermahani, S., Ordokhani, Y., Rabiei, K., Razzaghi, M., , J. Vibration Control 29 (2023), 15.-16, 3796-3808. MR4617773DOI
  28. Rabiei, K., Razzaghi, M., , J. Vibration Control 29 (2023), 7-8, 1806-1819. MR4560887DOI
  29. Heydari, M. H., Razzaghi, M., Avazzadeh, Z., , Vibration Control 29 (2023), 5-6, 1164-1175. MR4548331DOI
  30. Heydari, M. H., Tavakoli, R., Razzagh, M., , Int. J. Systems Sci. 53 (2022), 12, 2694-2708. MR4496198DOI
  31. Ghanbari, G., Razzaghi, M., , Int. J. Systems Sci. 53 (2022), 4, 778-792. MR4385669DOI
  32. Heydari, M. H., Razzaghi, M., 10.1080/00207721.2021.1947411, Int. J. Systems Sci. 53 (2022), 2, 240-252. MR4369004DOI10.1080/00207721.2021.1947411
  33. Lakestani, M., Edrisi-Tabrizi, Y., Razzaghi, M., , Trans. Inst. Measurement Control 43 (2021), 11, 2425-2437. DOI
  34. Dehestani, H., Ordokhani, Y., Razzaghi, M., , Int. J. Systems Sci. 51 (2020), 6, 1032-1052. MR4095675DOI
  35. Mashayekhi, S., Razzaghi, M., 10.1177/1077546316665956, J. Vibration Control 24 (2018), 9, 1621-1631. MR3785609DOI10.1177/1077546316665956
  36. Mohammed, J. K., Khudair, A. R., , J. Partial Differential Equations Appl. Math. 7 (2023), 9, 100507. DOI
  37. Hassani, H., Machado, J. A. Tenreiro, Avazzadeh, Z., Naraghirad, E., Dahaghin, M. Sh., 10.1007/s10915-020-01213-0, J. Scient. Comput. 83 (2020), 2, 1-21. MR4091557DOI10.1007/s10915-020-01213-0
  38. Suykens, J. A. K., Vandewalle, J., Moor, B. D., Optimal control by least squares support vector machines., J. Partial Differential Equations Appl. Math. 14 (2001), 1, 23-35. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.