Loading [MathJax]/extensions/MathZoom.js
In this paper, we employ the reduced basis method as a surrogate model for the solution of linear-quadratic optimal control problems governed by parametrized elliptic partial differential equations. We present a posteriori error estimation and dual procedures that provide rigorous bounds for the error in several quantities of interest: the optimal control, the cost functional, and general linear output functionals of the control, state, and adjoint variables. We show that, based on the assumption...
This work is concerned with the reformulation of evolutionary problems in a weak form enabling consideration of solutions that may exhibit evolving microstructures. This reformulation is accomplished by expressing the evolutionary problem in variational form, i.e., by identifying a functional whose minimizers represent entire trajectories of the system. The particular class of functionals under consideration is derived by first defining a sequence of time-discretized minimum problems and subsequently...
This work is concerned with the reformulation of evolutionary problems in a
weak form enabling consideration of solutions that may exhibit
evolving microstructures. This reformulation is accomplished by
expressing the evolutionary problem in variational form, i.e., by
identifying a functional whose minimizers represent entire
trajectories of the system. The particular class of functionals under
consideration is derived by first defining a sequence of time-discretized
minimum problems and...
We provide a local as well as a semilocal convergence analysis for Newton's method to approximate a locally unique solution of an equation in a Banach space setting. Using a combination of center-gamma with a gamma-condition, we obtain an upper bound on the inverses of the operators involved which can be more precise than those given in the elegant works by Smale, Wang, and Zhao and Wang. This observation leads (under the same or less computational cost) to a convergence analysis with the following...
Using the Haar-Kármán principle, approximate solutions of the basic boundary value problems are proposed and studied, which consist of piecewise linear stress fields on composite triangles. The torsion problem is solved in an analogous manner. Some convergence results are proven.
We address in this article the computation of the convex solutions of the Dirichlet problem for the real elliptic Monge − Ampère equation for general convex domains in two dimensions. The method we discuss combines a least-squares formulation with a relaxation method. This approach leads to a sequence of Poisson − Dirichlet problems and another sequence of low dimensional algebraic eigenvalue problems of a new type. Mixed finite element approximations with a smoothing procedure are used for the...
The problem considered is that of approximate minimisation of the Bolza problem of optimal control. Starting from Bellman's method of dynamic programming, we define the ε-value function to be an approximation to the value function being a solution to the Hamilton-Jacobi equation. The paper shows an approach that can be used to construct an algorithm for calculating the values of an ε-value function at given points, thus approximating the respective values of the value function.
Currently displaying 1 –
20 of
518