On the regularity of bilinear maximal operator

Feng Liu; Guoru Wang

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 1, page 277-295
  • ISSN: 0011-4642

Abstract

top
We study the regularity properties of bilinear maximal operator. Some new bounds and continuity for the above operators are established on the Sobolev spaces, Triebel-Lizorkin spaces and Besov spaces. In addition, the quasicontinuity and approximate differentiability of the bilinear maximal function are also obtained.

How to cite

top

Liu, Feng, and Wang, Guoru. "On the regularity of bilinear maximal operator." Czechoslovak Mathematical Journal 73.1 (2023): 277-295. <http://eudml.org/doc/299393>.

@article{Liu2023,
abstract = {We study the regularity properties of bilinear maximal operator. Some new bounds and continuity for the above operators are established on the Sobolev spaces, Triebel-Lizorkin spaces and Besov spaces. In addition, the quasicontinuity and approximate differentiability of the bilinear maximal function are also obtained.},
author = {Liu, Feng, Wang, Guoru},
journal = {Czechoslovak Mathematical Journal},
keywords = {bilinear maximal operator; Triebel-Lizorkin space; Besov space; Lipschitz space; $p$-quaiscontinuous; approximate differentiability},
language = {eng},
number = {1},
pages = {277-295},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the regularity of bilinear maximal operator},
url = {http://eudml.org/doc/299393},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Liu, Feng
AU - Wang, Guoru
TI - On the regularity of bilinear maximal operator
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 1
SP - 277
EP - 295
AB - We study the regularity properties of bilinear maximal operator. Some new bounds and continuity for the above operators are established on the Sobolev spaces, Triebel-Lizorkin spaces and Besov spaces. In addition, the quasicontinuity and approximate differentiability of the bilinear maximal function are also obtained.
LA - eng
KW - bilinear maximal operator; Triebel-Lizorkin space; Besov space; Lipschitz space; $p$-quaiscontinuous; approximate differentiability
UR - http://eudml.org/doc/299393
ER -

References

top
  1. Carneiro, E., Moreira, D., 10.1090/S0002-9939-08-09515-4, Proc. Am. Math. Soc. 136 (2008), 4395-4404. (2008) Zbl1157.42003MR2431055DOI10.1090/S0002-9939-08-09515-4
  2. Federer, H., Ziemer, W. P., 10.1512/iumj.1972.22.22013, Indiana Univ. Math. J. 22 (1972), 139-158. (1972) Zbl0238.28015MR0435361DOI10.1512/iumj.1972.22.22013
  3. Frazier, M., Jawerth, B., Weiss, G., 10.1090/cbms/079, Regional Conference Series in Mathematics 79. AMS, Providence (1991). (1991) Zbl0757.42006MR1107300DOI10.1090/cbms/079
  4. Gilbarg, D., Trudinger, N. S., 10.1007/978-3-642-61798-0, Grundlehren der Mathematischen Wissenschaften 224. Springer, Berlin (1983). (1983) Zbl0562.35001MR0737190DOI10.1007/978-3-642-61798-0
  5. Grafakos, L., Classical and Modern Fourier Analysis, Pearson, Upper Saddle River (2004). (2004) Zbl1148.42001MR2449250
  6. Hajłasz, P., Malý, J., 10.1090/S0002-9939-09-09971-7, Proc. Am. Math. Soc. 138 (2010), 165-174. (2010) Zbl1187.42016MR2550181DOI10.1090/S0002-9939-09-09971-7
  7. Hajłasz, P., Onninen, J., On boundedness of maximal functions in Sobolev spaces, Ann. Acad. Sci. Fenn., Math. 29 (2004), 167-176. (2004) Zbl1059.46020MR2041705
  8. Kilpeläinen, T., Kinnunen, J., Martio, O., 10.1023/A:1008601220456, Potential Anal. 12 (2000), 233-247. (2000) Zbl0962.46021MR1752853DOI10.1023/A:1008601220456
  9. Kinnunen, J., 10.1007/BF02773636, Isr. J. Math. 100 (1997), 117-124. (1997) Zbl0882.43003MR1469106DOI10.1007/BF02773636
  10. Kinnunen, J., Lindqvist, P., 10.1515/crll.1998.095, J. Reine. Angew. Math. 503 (1998), 161-167. (1998) Zbl0904.42015MR1650343DOI10.1515/crll.1998.095
  11. Kinnunen, J., Saksman, E., 10.1112/S0024609303002017, Bull. Lond. Math. Soc. 35 (2003), 529-535. (2003) Zbl1021.42009MR1979008DOI10.1112/S0024609303002017
  12. Korry, S., 10.5209/rev_REMA.2002.v15.n2.16899, Rev. Mat. Complut. 15 (2002), 401-416. (2002) Zbl1033.42013MR1951818DOI10.5209/rev_REMA.2002.v15.n2.16899
  13. Korry, S., 10.1007/s00013-003-0416-x, Arch. Math. 82 (2004), 40-50. (2004) Zbl1061.46034MR2034469DOI10.1007/s00013-003-0416-x
  14. Lacey, M. T., 10.2307/121111, Ann. Math. (2) 151 (2000), 35-57. (2000) Zbl0967.47031MR1745019DOI10.2307/121111
  15. Liu, F., Liu, S., Zhang, X., 10.1007/s00025-020-01215-2, Result. Math. 75 (2020), Article ID 88, 29 pages. (2020) Zbl1440.42086MR4105758DOI10.1007/s00025-020-01215-2
  16. Liu, F., Wu, H., 10.4153/CMB-2014-070-7, Can. Math. Bull. 58 (2015), 808-817. (2015) Zbl1330.42014MR3415670DOI10.4153/CMB-2014-070-7
  17. Liu, F., Wu, H., 10.1016/j.jmaa.2017.03.058, J. Math. Anal. Appl. 453 (2017), 144-158. (2017) Zbl1404.42036MR3641765DOI10.1016/j.jmaa.2017.03.058
  18. Luiro, H., 10.1090/S0002-9939-06-08455-3, Proc. Am. Math. Soc. 135 (2007), 243-251. (2007) Zbl1136.42018MR2280193DOI10.1090/S0002-9939-06-08455-3
  19. Luiro, H., 10.1017/S0013091507000867, Proc. Edinb. Math. Soc., II. Ser. 53 (2010), 211-237. (2010) Zbl1183.42025MR2579688DOI10.1017/S0013091507000867
  20. Triebel, H., 10.1007/978-3-0346-0416-1, Monographs in Mathematics 78. Birkhäuser, Basel (1983). (1983) Zbl0546.46027MR0781540DOI10.1007/978-3-0346-0416-1
  21. Whitney, H., 10.2140/pjm.1951.1.143, Pac. J. Math. 1 (1951), 143-159. (1951) Zbl0043.05803MR0043878DOI10.2140/pjm.1951.1.143
  22. Yabuta, K., 10.1007/s11766-015-3358-8, Appl. Math., Ser. B (Engl. Ed.) 30 (2015), 418-446. (2015) Zbl1349.42037MR3434042DOI10.1007/s11766-015-3358-8

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.