On the regularity of bilinear maximal operator
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 1, page 277-295
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLiu, Feng, and Wang, Guoru. "On the regularity of bilinear maximal operator." Czechoslovak Mathematical Journal 73.1 (2023): 277-295. <http://eudml.org/doc/299393>.
@article{Liu2023,
abstract = {We study the regularity properties of bilinear maximal operator. Some new bounds and continuity for the above operators are established on the Sobolev spaces, Triebel-Lizorkin spaces and Besov spaces. In addition, the quasicontinuity and approximate differentiability of the bilinear maximal function are also obtained.},
author = {Liu, Feng, Wang, Guoru},
journal = {Czechoslovak Mathematical Journal},
keywords = {bilinear maximal operator; Triebel-Lizorkin space; Besov space; Lipschitz space; $p$-quaiscontinuous; approximate differentiability},
language = {eng},
number = {1},
pages = {277-295},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the regularity of bilinear maximal operator},
url = {http://eudml.org/doc/299393},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Liu, Feng
AU - Wang, Guoru
TI - On the regularity of bilinear maximal operator
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 1
SP - 277
EP - 295
AB - We study the regularity properties of bilinear maximal operator. Some new bounds and continuity for the above operators are established on the Sobolev spaces, Triebel-Lizorkin spaces and Besov spaces. In addition, the quasicontinuity and approximate differentiability of the bilinear maximal function are also obtained.
LA - eng
KW - bilinear maximal operator; Triebel-Lizorkin space; Besov space; Lipschitz space; $p$-quaiscontinuous; approximate differentiability
UR - http://eudml.org/doc/299393
ER -
References
top- Carneiro, E., Moreira, D., 10.1090/S0002-9939-08-09515-4, Proc. Am. Math. Soc. 136 (2008), 4395-4404. (2008) Zbl1157.42003MR2431055DOI10.1090/S0002-9939-08-09515-4
- Federer, H., Ziemer, W. P., 10.1512/iumj.1972.22.22013, Indiana Univ. Math. J. 22 (1972), 139-158. (1972) Zbl0238.28015MR0435361DOI10.1512/iumj.1972.22.22013
- Frazier, M., Jawerth, B., Weiss, G., 10.1090/cbms/079, Regional Conference Series in Mathematics 79. AMS, Providence (1991). (1991) Zbl0757.42006MR1107300DOI10.1090/cbms/079
- Gilbarg, D., Trudinger, N. S., 10.1007/978-3-642-61798-0, Grundlehren der Mathematischen Wissenschaften 224. Springer, Berlin (1983). (1983) Zbl0562.35001MR0737190DOI10.1007/978-3-642-61798-0
- Grafakos, L., Classical and Modern Fourier Analysis, Pearson, Upper Saddle River (2004). (2004) Zbl1148.42001MR2449250
- Hajłasz, P., Malý, J., 10.1090/S0002-9939-09-09971-7, Proc. Am. Math. Soc. 138 (2010), 165-174. (2010) Zbl1187.42016MR2550181DOI10.1090/S0002-9939-09-09971-7
- Hajłasz, P., Onninen, J., On boundedness of maximal functions in Sobolev spaces, Ann. Acad. Sci. Fenn., Math. 29 (2004), 167-176. (2004) Zbl1059.46020MR2041705
- Kilpeläinen, T., Kinnunen, J., Martio, O., 10.1023/A:1008601220456, Potential Anal. 12 (2000), 233-247. (2000) Zbl0962.46021MR1752853DOI10.1023/A:1008601220456
- Kinnunen, J., 10.1007/BF02773636, Isr. J. Math. 100 (1997), 117-124. (1997) Zbl0882.43003MR1469106DOI10.1007/BF02773636
- Kinnunen, J., Lindqvist, P., 10.1515/crll.1998.095, J. Reine. Angew. Math. 503 (1998), 161-167. (1998) Zbl0904.42015MR1650343DOI10.1515/crll.1998.095
- Kinnunen, J., Saksman, E., 10.1112/S0024609303002017, Bull. Lond. Math. Soc. 35 (2003), 529-535. (2003) Zbl1021.42009MR1979008DOI10.1112/S0024609303002017
- Korry, S., 10.5209/rev_REMA.2002.v15.n2.16899, Rev. Mat. Complut. 15 (2002), 401-416. (2002) Zbl1033.42013MR1951818DOI10.5209/rev_REMA.2002.v15.n2.16899
- Korry, S., 10.1007/s00013-003-0416-x, Arch. Math. 82 (2004), 40-50. (2004) Zbl1061.46034MR2034469DOI10.1007/s00013-003-0416-x
- Lacey, M. T., 10.2307/121111, Ann. Math. (2) 151 (2000), 35-57. (2000) Zbl0967.47031MR1745019DOI10.2307/121111
- Liu, F., Liu, S., Zhang, X., 10.1007/s00025-020-01215-2, Result. Math. 75 (2020), Article ID 88, 29 pages. (2020) Zbl1440.42086MR4105758DOI10.1007/s00025-020-01215-2
- Liu, F., Wu, H., 10.4153/CMB-2014-070-7, Can. Math. Bull. 58 (2015), 808-817. (2015) Zbl1330.42014MR3415670DOI10.4153/CMB-2014-070-7
- Liu, F., Wu, H., 10.1016/j.jmaa.2017.03.058, J. Math. Anal. Appl. 453 (2017), 144-158. (2017) Zbl1404.42036MR3641765DOI10.1016/j.jmaa.2017.03.058
- Luiro, H., 10.1090/S0002-9939-06-08455-3, Proc. Am. Math. Soc. 135 (2007), 243-251. (2007) Zbl1136.42018MR2280193DOI10.1090/S0002-9939-06-08455-3
- Luiro, H., 10.1017/S0013091507000867, Proc. Edinb. Math. Soc., II. Ser. 53 (2010), 211-237. (2010) Zbl1183.42025MR2579688DOI10.1017/S0013091507000867
- Triebel, H., 10.1007/978-3-0346-0416-1, Monographs in Mathematics 78. Birkhäuser, Basel (1983). (1983) Zbl0546.46027MR0781540DOI10.1007/978-3-0346-0416-1
- Whitney, H., 10.2140/pjm.1951.1.143, Pac. J. Math. 1 (1951), 143-159. (1951) Zbl0043.05803MR0043878DOI10.2140/pjm.1951.1.143
- Yabuta, K., 10.1007/s11766-015-3358-8, Appl. Math., Ser. B (Engl. Ed.) 30 (2015), 418-446. (2015) Zbl1349.42037MR3434042DOI10.1007/s11766-015-3358-8
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.