Boundedness of Hardy-Littlewood maximal operator in the framework of Lizorkin-Triebel spaces.

Soulaymane Korry

Revista Matemática Complutense (2002)

  • Volume: 15, Issue: 2, page 401-416
  • ISSN: 1139-1138

Abstract

top
We describe a class O of nonlinear operators which are bounded on the Lizorkin-Triebel spaces Fsp,q(Rn), for 0 < s < 1 and 1 < p, q < ∞. As a corollary, we prove that the Hardy-Littlewood maximal operator is bounded on Fsp,q(Rn), for 0 < s < 1 and 1 < p, q < ∞ ; this extends the result of Kinnunen (1997), valid for the Sobolev space H1p(Rn).

How to cite

top

Korry, Soulaymane. "Boundedness of Hardy-Littlewood maximal operator in the framework of Lizorkin-Triebel spaces.." Revista Matemática Complutense 15.2 (2002): 401-416. <http://eudml.org/doc/44373>.

@article{Korry2002,
abstract = {We describe a class O of nonlinear operators which are bounded on the Lizorkin-Triebel spaces Fsp,q(Rn), for 0 &lt; s &lt; 1 and 1 &lt; p, q &lt; ∞. As a corollary, we prove that the Hardy-Littlewood maximal operator is bounded on Fsp,q(Rn), for 0 &lt; s &lt; 1 and 1 &lt; p, q &lt; ∞ ; this extends the result of Kinnunen (1997), valid for the Sobolev space H1p(Rn).},
author = {Korry, Soulaymane},
journal = {Revista Matemática Complutense},
keywords = {Análisis de Fourier; Operador no lineal; Operador maximal de Hardy-Littlewood; Operadores acotados; maximal operator; Hardy-Littlewood maximal operator; Triebel-Lizorkin spaces; boundedness},
language = {eng},
number = {2},
pages = {401-416},
title = {Boundedness of Hardy-Littlewood maximal operator in the framework of Lizorkin-Triebel spaces.},
url = {http://eudml.org/doc/44373},
volume = {15},
year = {2002},
}

TY - JOUR
AU - Korry, Soulaymane
TI - Boundedness of Hardy-Littlewood maximal operator in the framework of Lizorkin-Triebel spaces.
JO - Revista Matemática Complutense
PY - 2002
VL - 15
IS - 2
SP - 401
EP - 416
AB - We describe a class O of nonlinear operators which are bounded on the Lizorkin-Triebel spaces Fsp,q(Rn), for 0 &lt; s &lt; 1 and 1 &lt; p, q &lt; ∞. As a corollary, we prove that the Hardy-Littlewood maximal operator is bounded on Fsp,q(Rn), for 0 &lt; s &lt; 1 and 1 &lt; p, q &lt; ∞ ; this extends the result of Kinnunen (1997), valid for the Sobolev space H1p(Rn).
LA - eng
KW - Análisis de Fourier; Operador no lineal; Operador maximal de Hardy-Littlewood; Operadores acotados; maximal operator; Hardy-Littlewood maximal operator; Triebel-Lizorkin spaces; boundedness
UR - http://eudml.org/doc/44373
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.