Faber polynomial coefficient estimates of bi-univalent functions connected with the q -convolution

Sheza M. El-Deeb; Serap Bulut

Mathematica Bohemica (2023)

  • Volume: 148, Issue: 1, page 49-64
  • ISSN: 0862-7959

Abstract

top
We introduce a new class of bi-univalent functions defined in the open unit disc and connected with a q -convolution. We find estimates for the general Taylor-Maclaurin coefficients of the functions in this class by using Faber polynomial expansions and we obtain an estimation for the Fekete-Szegö problem for this class.

How to cite

top

El-Deeb, Sheza M., and Bulut, Serap. "Faber polynomial coefficient estimates of bi-univalent functions connected with the $q$-convolution." Mathematica Bohemica 148.1 (2023): 49-64. <http://eudml.org/doc/299398>.

@article{El2023,
abstract = {We introduce a new class of bi-univalent functions defined in the open unit disc and connected with a $q$-convolution. We find estimates for the general Taylor-Maclaurin coefficients of the functions in this class by using Faber polynomial expansions and we obtain an estimation for the Fekete-Szegö problem for this class.},
author = {El-Deeb, Sheza M., Bulut, Serap},
journal = {Mathematica Bohemica},
keywords = {Faber polynomial; bi-univalent function; convolution; $q$-derivative operator},
language = {eng},
number = {1},
pages = {49-64},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Faber polynomial coefficient estimates of bi-univalent functions connected with the $q$-convolution},
url = {http://eudml.org/doc/299398},
volume = {148},
year = {2023},
}

TY - JOUR
AU - El-Deeb, Sheza M.
AU - Bulut, Serap
TI - Faber polynomial coefficient estimates of bi-univalent functions connected with the $q$-convolution
JO - Mathematica Bohemica
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 148
IS - 1
SP - 49
EP - 64
AB - We introduce a new class of bi-univalent functions defined in the open unit disc and connected with a $q$-convolution. We find estimates for the general Taylor-Maclaurin coefficients of the functions in this class by using Faber polynomial expansions and we obtain an estimation for the Fekete-Szegö problem for this class.
LA - eng
KW - Faber polynomial; bi-univalent function; convolution; $q$-derivative operator
UR - http://eudml.org/doc/299398
ER -

References

top
  1. Risha, M. H. Abu, Annaby, M. H., Ismail, M. E. H., Mansour, Z. S., 10.4171/ZAA/1338, Z. Anal. Anwend. 26 (2007), 481-494. (2007) Zbl1143.39009MR2341770DOI10.4171/ZAA/1338
  2. Aldweby, H., Darus, M., 10.22436/jmcs.019.01.08, J. Math. Comput. Sci., JMCS 19 (2019), 58-64. (2019) DOI10.22436/jmcs.019.01.08
  3. Arif, M., Haq, M. Ul, Liu, J.-L., 10.1155/2018/3818915, J. Funct. Spaces 2018 (2018), Article ID 3818915, 5 pages. (2018) Zbl1388.30012MR3762185DOI10.1155/2018/3818915
  4. Brannan, D. A., (eds.), J. Clunie, Aspects of Contemporary Complex Analysis, Academic Press, London (1980). (1980) Zbl0483.00007MR0623462
  5. Brannan, D. A., Clunie, J., Kirwan, W. E., 10.4153/CJM-1970-055-8, Can. J. Math. 22 (1970), 476-485. (1970) Zbl0197.35602MR0260994DOI10.4153/CJM-1970-055-8
  6. Brannan, D. A., Taha, T. S., On some classes of bi-univalent functions, Stud. Univ. Babeş-Bolyai, Math. 31 (1986), 70-77. (1986) Zbl0614.30017MR0911858
  7. Bulboacă, T., Differential Subordinations and Superordinations: Recent Results, House of Scientific Book Publications, Cluj-Napoca (2005). (2005) 
  8. Bulut, S., 10.2298/FIL1606567B, Filomat 30 (2016), 1567-1575. (2016) Zbl1458.30011MR3530102DOI10.2298/FIL1606567B
  9. Çağlar, M., Deniz, E., 10.1501/Commua1_0000000777, Commun. Fac. Sci. Univ. Ank., Sér. A1, Math. Stat. 66 (2017), 85-91. (2017) Zbl1391.30018MR3611859DOI10.1501/Commua1_0000000777
  10. Çağlar, M., Orhan, H., Yağmur, N., 10.2298/FIL1307165C, Filomat 27 (2013), 1165-1171. (2013) Zbl1324.30017MR3243989DOI10.2298/FIL1307165C
  11. Duren, P. L., Univalent Functions, Grundlehren der mathematischen Wissenschaften 259. Springer, New York (1983). (1983) Zbl0514.30001MR0708494
  12. El-Deeb, S. M., 10.1155/2020/8368951, Abstr. Appl. Anal. 2020 (2020), Article ID 8368951, 7 pages. (2020) Zbl07245172MR4104661DOI10.1155/2020/8368951
  13. El-Deeb, S. M., Bulboacă, T., 10.3390/math7121185, Mathematics 7 (2019), Article ID 1185, 17 pages. (2019) DOI10.3390/math7121185
  14. El-Deeb, S. M., Bulboacă, T., 10.1186/s42787-019-0049-2, J. Egypt. Math. Soc. 27 (2019), Article ID 42, 11 pages. (2019) Zbl1435.30053MR4092068DOI10.1186/s42787-019-0049-2
  15. El-Deeb, S. M., Bulboacă, T., 10.3103/S1068362321040105, J. Contemp. Math. Anal., Armen. Acad. Sci. 56 (2021), 214-224. (2021) Zbl1475.30032MR4335224DOI10.3103/S1068362321040105
  16. El-Deeb, S. M., Bulboacă, T., El-Matary, B. M., 10.3390/math8030418, Mathematics 8 (2020), Article ID 418, 14 pages. (2020) DOI10.3390/math8030418
  17. Elhaddad, S., Darus, M., 10.3390/math8030306, Mathematics 8 (2020), Article ID 306, 14 pages. (2020) DOI10.3390/math8030306
  18. Faber, G., 10.1007/BF01444293, Math. Ann. 57 (1903), 389-408 German 9999JFM99999 34.0430.01. (1903) MR1511216DOI10.1007/BF01444293
  19. Gasper, G., Rahman, M., 10.1017/CBO9780511526251, Encyclopedia of Mathematics and Its Applications 35. Cambridge University Press, Cambridge (1990). (1990) Zbl0695.33001MR1052153DOI10.1017/CBO9780511526251
  20. Jackson, F. H., 10.1017/S0080456800002751, Trans. Royal Soc. Edinburgh 46 (1909), 253-281. (1909) DOI10.1017/S0080456800002751
  21. Jackson, F. H., On q -definite integrals, Quart. J. 41 (1910), 193-203 9999JFM99999 41.0317.04. (1910) 
  22. Kamble, P. N., Shrigan, M. G., 10.5666/KMJ.2018.58.4.677, Kyungpook Math. J. 58 (2018), 677-688. (2018) Zbl1422.30018MR3895894DOI10.5666/KMJ.2018.58.4.677
  23. Lewin, M., 10.1090/S0002-9939-1967-0206255-1, Proc. Am. Math. Soc. 18 (1967), 63-68. (1967) Zbl0158.07802MR0206255DOI10.1090/S0002-9939-1967-0206255-1
  24. Miller, S. S., Mocanu, P. T., 10.1201/9781482289817, Pure and Applied Mathematics 225. Marcel Dekker, New York (2000). (2000) Zbl0954.34003MR1760285DOI10.1201/9781482289817
  25. Naeem, M., Khan, S., Sakar, F. M., Faber polynomial coefficients estimates of bi-univalent functions, Int. J. Maps Math. 3 (2020), 57-67. (2020) MR4179354
  26. Netanyahu, E., 10.1007/BF00247676, Arch. Ration. Mech. Anal. 32 (1969), 100-112. (1969) Zbl0186.39703MR0235110DOI10.1007/BF00247676
  27. Porwal, S., 10.1155/2014/984135, J. Complex Anal. 2014 (2014), Article ID 984135, 3 pages. (2014) Zbl1310.30017MR3173344DOI10.1155/2014/984135
  28. Prajapat, J. K., 10.1016/j.mcm.2011.10.024, Math. Comput. Modelling 55 (2012), 1456-1465. (2012) Zbl1255.30024MR2887529DOI10.1016/j.mcm.2011.10.024
  29. Sakar, F. M., Naeem, M., Khan, S., Hussain, S., Hankel determinant for class of analytic functions involving q -derivative operator, J. Adv. Math. Stud. 14 (2021), 265-278. (2021) Zbl07389042MR4398168
  30. Srivastava, H. M., 10.1093/imamat/30.3.315, IMA J. Appl. Math. 30 (1983), 315-323. (1983) Zbl0504.33003MR0719983DOI10.1093/imamat/30.3.315
  31. Srivastava, H. M., 10.1093/imamat/33.2.205, IMA J. Appl. Math. 33 (1984), 205-209. (1984) Zbl0544.33007MR0767521DOI10.1093/imamat/33.2.205
  32. Srivastava, H. M., Univalent functions, fractional calculus, and associated generalized hypergeometric functions, Univalent Functions, Fractional Calculus, and Their Applications John Willey & Sons, New York (1989), 329-354. (1989) Zbl0693.30013MR1199160
  33. Srivastava, H. M., 10.1007/s40995-019-00815-0, Iran. J. Sci. Technol., Trans. A, Sci. 44 (2020), 327-344. (2020) MR4064730DOI10.1007/s40995-019-00815-0
  34. Srivastava, H. M., Bulut, S., Çağlar, M., Yağmur, N., 10.2298/FIL1305831S, Filomat 27 (2013), 831-842. (2013) Zbl1432.30014MR3186102DOI10.2298/FIL1305831S
  35. Srivastava, H. M., Eker, S. S., Ali, R. M., 10.2298/FIL1508839S, Filomat 29 (2015), 1839-1845. (2015) Zbl1458.30035MR3403901DOI10.2298/FIL1508839S
  36. Srivastava, H. M., Eker, S. S., Hamidi, S. G., Jahangiri, J. M., 10.1007/s41980-018-0011-3, Bull. Iran. Math. Soc. 44 (2018), 149-157. (2018) Zbl1409.30021MR3879475DOI10.1007/s41980-018-0011-3
  37. Srivastava, H. M., El-Deeb, S. M., 10.18514/MMN.2020.3102, Miskolc Math. Notes 21 (2020), 417-433. (2020) Zbl07254908MR4133288DOI10.18514/MMN.2020.3102
  38. Srivastava, H. M., El-Deeb, S. M., 10.3934/math.2020454, AIMS Math. 5 (2020), 7087-7106. (2020) MR4150209DOI10.3934/math.2020454
  39. Srivastava, H. M., Karlsson, P. W., Multiple Gaussian Hypergeometric Series, Ellis Horwood Series in Mathematics and Its Applications. John Wiley & Sons, New York (1985). (1985) Zbl0552.33001MR0834385
  40. Srivastava, H. M., Khan, S., Ahmad, Q. Z., Khan, N., Hussain, S., 10.24193/subbmath.2018.4.01, Stud. Univ. Babeş-Bolyai, Math. 63 (2018), 419-436. (2018) Zbl1438.05021MR3886058DOI10.24193/subbmath.2018.4.01
  41. Srivastava, H. M., Mishra, A. K., Gochhayat, P., 10.1016/j.aml.2010.05.009, Appl. Math. Lett. 23 (2010), 1188-1192. (2010) Zbl1201.30020MR2665593DOI10.1016/j.aml.2010.05.009
  42. Srivastava, H. M., Motamednezhad, A., Adegani, E. A., 10.3390/math8020172, Mathematics 8 (2020), Article ID 172, 12 pages. (2020) DOI10.3390/math8020172
  43. Srivastava, H. M., Murugusundaramoorthy, G., El-Deeb, S. M., 10.23952/jnva.5.2021.1.07, J. Nonlinear Var. Anal. 5 (2021), 103-118. (2021) Zbl07312309DOI10.23952/jnva.5.2021.1.07
  44. Srivastava, H. M., Sakar, F. M., Güney, H. O., 10.2298/FIL1804313S, Filomat 32 (2018), 1313-1322. (2018) Zbl07462770MR3848107DOI10.2298/FIL1804313S

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.