The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Faber polynomial coefficient estimates of bi-univalent functions connected with the q -convolution”

Sakaguchi type functions defined by balancing polynomials

Gunasekar Saravanan, Sudharsanan Baskaran, Balasubramaniam Vanithakumari, Serap Bulut (2025)

Mathematica Bohemica

Similarity:

The class of Sakaguchi type functions defined by balancing polynomials has been introduced as a novel subclass of bi-univalent functions. The bounds for the Fekete-Szegö inequality and the initial coefficients | a 2 | and | a 3 | have also been estimated.

Initial Maclaurin coefficient estimates for λ -pseudo-starlike bi-univalent functions associated with Sakaguchi-type functions

Abbas Kareem Wanas, Basem Aref Frasin (2022)

Mathematica Bohemica

Similarity:

We introduce and study two certain classes of holomorphic and bi-univalent functions associating λ -pseudo-starlike functions with Sakaguchi-type functions. We determine upper bounds for the Taylor–Maclaurin coefficients | a 2 | and | a 3 | for functions belonging to these classes. Further we point out certain special cases for our results.

Region of variability for functions with positive real part

Saminathan Ponnusamy, Allu Vasudevarao (2010)

Annales Polonici Mathematici

Similarity:

For γ ∈ ℂ such that |γ| < π/2 and 0 ≤ β < 1, let γ , β denote the class of all analytic functions P in the unit disk with P(0) = 1 and R e ( e i γ P ( z ) ) > β c o s γ in . For any fixed z₀ ∈ and λ ∈ ̅, we shall determine the region of variability V ( z , λ ) for 0 z P ( ζ ) d ζ when P ranges over the class ( λ ) = P γ , β : P ' ( 0 ) = 2 ( 1 - β ) λ e - i γ c o s γ . As a consequence, we present the region of variability for some subclasses of univalent functions. We also graphically illustrate the region of variability for several sets of parameters.

Sufficient conditions for starlike and convex functions

S. Ponnusamy, P. Vasundhra (2007)

Annales Polonici Mathematici

Similarity:

For n ≥ 1, let denote the class of all analytic functions f in the unit disk Δ of the form f ( z ) = z + k = 2 a k z k . For Re α < 2 and γ > 0 given, let (γ,α) denote the class of all functions f ∈ satisfying the condition |f’(z) - α f(z)/z + α - 1| ≤ γ, z ∈ Δ. We find sufficient conditions for functions in (γ,α) to be starlike of order β. A generalization of this result along with some convolution results is also obtained.

A convolution property of the Cantor-Lebesgue measure, II

Daniel M. Oberlin (2003)

Colloquium Mathematicae

Similarity:

For 1 ≤ p,q ≤ ∞, we prove that the convolution operator generated by the Cantor-Lebesgue measure on the circle is a contraction whenever it is bounded from L p ( ) to L q ( ) . We also give a condition on p which is necessary if this operator maps L p ( ) into L²().

Sharp estimation of the coefficients of bounded univalent functions close to identity

Lucjan Siewierski

Similarity:

CONTENTSIntroduction...............................................................................................................................................................................5Definitions and notation.........................................................................................................................................................7The main result........................................................................................................................................................................91....

Generalized problem of starlikeness for products of close-to-star functions

Jacek Dziok (2013)

Annales Polonici Mathematici

Similarity:

We consider functions of the type F ( z ) = z j = 1 n [ f j ( z ) / z ] a j , where a j are real numbers and f j are β j -strongly close-to-starlike functions of order α j . We look for conditions on the center and radius of the disk (a,r) = z:|z-a| < r, |a| < r ≤ 1 - |a|, ensuring that F((a,r)) is a domain starlike with respect to the origin.

Some properties for α -starlike functions with respect to k -symmetric points of complex order

H. E. Darwish, A. Y. Lashin, S. M. Sowileh (2017)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

In the present work, we introduce the subclass 𝒯 γ , α k ( ϕ ) , of starlike functions with respect to k -symmetric points of complex order γ ( γ 0 ) in the open unit disc . Some interesting subordination criteria, inclusion relations and the integral representation for functions belonging to this class are provided. The results obtained generalize some known results, and some other new results are obtained.

The V a -deformation of the classical convolution

Anna Dorota Krystek (2007)

Banach Center Publications

Similarity:

We study deformations of the classical convolution. For every invertible transformation T:μ ↦ Tμ, we are able to define a new associative convolution of measures by μ * T ν = T - 1 ( T μ * T ν ) . We deal with the V a -deformation of the classical convolution. We prove the analogue of the classical Lévy-Khintchine formula. We also show the central limit measure, which turns out to be the standard Gaussian measure. Moreover, we calculate the Poisson measure in the V a -deformed classical convolution and give the orthogonal...

Convolution conditions for bounded α -starlike functions of complex order

A. Y. Lashin (2017)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let A be the class of analytic functions in the unit disc U of the complex plane with the normalization f ( 0 ) = f ' ( 0 ) - 1 = 0 . We introduce a subclass S M * ( α , b ) of A , which unifies the classes of bounded starlike and convex functions of complex order. Making use of Salagean operator, a more general class S M * ( n , α , b ) ( n 0 ) related to S M * ( α , b ) is also considered under the same conditions. Among other things, we find convolution conditions for a function f A to belong to the class S M * ( α , b ) . Several properties of the class S M * ( n , α , b ) are investigated. ...

Some subclasses of meromorphic and multivalent functions

Ding-Gong Yang, Jin-Lin Liu (2014)

Annales Polonici Mathematici

Similarity:

The authors introduce two new subclasses F p , k ( λ , A , B ) and G p , k ( λ , A , B ) of meromorphically multivalent functions. Distortion bounds and convolution properties for F p , k ( λ , A , B ) , G p , k ( λ , A , B ) and their subclasses with positive coefficients are obtained. Some inclusion relations for these function classes are also given.

A proof of the Livingston conjecture for the fourth and the fifth coefficient of concave univalent functions

Karl-Joachim Wirths (2004)

Annales Polonici Mathematici

Similarity:

Let D denote the open unit disc and f:D → ℂ̅ be meromorphic and injective in D. We further assume that f has a simple pole at the point p ∈ (0,1) and an expansion f ( z ) = z + n = 2 a ( f ) z , |z| < p. In particular, we consider f that map D onto a domain whose complement with respect to ℂ̅ is convex. Because of the shape of f(D) these functions will be called concave univalent functions with pole p and the family of these functions is denoted by Co(p). It is proved that for p ∈ (0,1) the domain of variability...

Univalent harmonic mappings II

Albert E. Livingston (1997)

Annales Polonici Mathematici

Similarity:

Let a < 0 < b and Ω(a,b) = ℂ - ((-∞, a] ∪ [b,+∞)) and U= z: |z| < 1. We consider the class S H ( U , Ω ( a , b ) ) of functions f which are univalent, harmonic and sense-preserving with f(U) = Ω and satisfying f(0) = 0, f z ( 0 ) > 0 and f z ̅ ( 0 ) = 0 .

One-parameter semigroups in the convolution algebra of rapidly decreasing distributions

(2012)

Colloquium Mathematicae

Similarity:

The paper is devoted to infinitely differentiable one-parameter convolution semigroups in the convolution algebra C ' ( ; M m × m ) of matrix valued rapidly decreasing distributions on ℝⁿ. It is proved that G C ' ( ; M m × m ) is the generating distribution of an i.d.c.s. if and only if the operator t m × m - G on 1 + n satisfies the Petrovskiĭ condition for forward evolution. Some consequences are discussed.

The type set for homogeneous singular measures on ℝ ³ of polynomial type

E. Ferreyra, T. Godoy (2006)

Colloquium Mathematicae

Similarity:

Let φ:ℝ ² → ℝ be a homogeneous polynomial function of degree m ≥ 2, let μ be the Borel measure on ℝ ³ defined by μ ( E ) = D χ E ( x , φ ( x ) ) d x with D = x ∈ ℝ ²:|x| ≤ 1 and let T μ be the convolution operator with the measure μ. Let φ = φ e φ e be the decomposition of φ into irreducible factors. We show that if e i m / 2 for each φ i of degree 1, then the type set E μ : = ( 1 / p , 1 / q ) [ 0 , 1 ] × [ 0 , 1 ] : | | T μ | | p , q < can be explicitly described as a closed polygonal region.

On L p - L q boundedness for convolutions with kernels having singularities on a sphere

Alexey N. Karapetyants (2001)

Studia Mathematica

Similarity:

For the convolution operators A a α with symbols a ( | ξ | ) | ξ | - α e x p i | ξ | , 0 ≤ Re α < n, a ( | ξ | ) L , we construct integral representations and give the exact description of the set of pairs (1/p,1/q) for which the operators are bounded from L p to L q .

L p - L q estimates for some convolution operators with singular measures on the Heisenberg group

T. Godoy, P. Rocha (2013)

Colloquium Mathematicae

Similarity:

We consider the Heisenberg group ℍⁿ = ℂⁿ × ℝ. Let ν be the Borel measure on ℍⁿ defined by ν ( E ) = χ E ( w , φ ( w ) ) η ( w ) d w , where φ ( w ) = j = 1 n a j | w j | ² , w = (w₁,...,wₙ) ∈ ℂⁿ, a j , and η(w) = η₀(|w|²) with η C c ( ) . We characterize the set of pairs (p,q) such that the convolution operator with ν is L p ( ) - L q ( ) bounded. We also obtain L p -improving properties of measures supported on the graph of the function φ ( w ) = | w | 2 m .

Some applications of subordination theorems associated with fractional q -calculus operator

Wafaa Y. Kota, Rabha Mohamed El-Ashwah (2023)

Mathematica Bohemica

Similarity:

Using the operator 𝔇 q , ϱ m ( λ , l ) , we introduce the subclasses 𝔜 q , ϱ * m ( l , λ , γ ) and 𝔎 q , ϱ * m ( l , λ , γ ) of normalized analytic functions. Among the results investigated for each of these function classes, we derive some subordination results involving the Hadamard product of the associated functions. The interesting consequences of some of these subordination results are also discussed. Also, we derive integral means results for these classes.

Injectivity of sections of convex harmonic mappings and convolution theorems

Liulan Li, Saminathan Ponnusamy (2016)

Czechoslovak Mathematical Journal

Similarity:

We consider the class 0 of sense-preserving harmonic functions f = h + g ¯ defined in the unit disk | z | < 1 and normalized so that h ( 0 ) = 0 = h ' ( 0 ) - 1 and g ( 0 ) = 0 = g ' ( 0 ) , where h and g are analytic in the unit disk. In the first part of the article we present two classes 𝒫 H 0 ( α ) and 𝒢 H 0 ( β ) of functions from 0 and show that if f 𝒫 H 0 ( α ) and F 𝒢 H 0 ( β ) , then the harmonic convolution is a univalent and close-to-convex harmonic function in the unit disk provided certain conditions for parameters α and β are satisfied. In the second part we study the harmonic sections...

Certain subclasses of starlike functions of complex order involving the Hurwitz-Lerch Zeta function

G. Murugusundaramoorthy, K. Uma (2010)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Making use of the Hurwitz-Lerch Zeta function, we define a new subclass of uniformly convex functions and a corresponding subclass of starlike functions with negative coefficients of complex order denoted by T S b μ ( α , β , γ ) and obtain coefficient estimates, extreme points, the radii of close to convexity, starlikeness and convexity and neighbourhood results for the class T S b μ ( α , β , γ ) . In particular, we obtain integral means inequalities for the function f ( z ) belongs to the class  T S b μ ( α , β , γ ) in the unit disc.

Convolution theorems for starlike and convex functions in the unit disc

M. Anbudurai, R. Parvatham, S. Ponnusamy, V. Singh (2004)

Annales Polonici Mathematici

Similarity:

Let A denote the space of all analytic functions in the unit disc Δ with the normalization f(0) = f’(0) − 1 = 0. For β < 1, let P β = f A : R e f ' ( z ) > β , z Δ . For λ > 0, suppose that denotes any one of the following classes of functions: M 1 , λ ( 1 ) = f : R e z ( z f ' ( z ) ) ' ' > - λ , z Δ , M 1 , λ ( 2 ) = f : R e z ( z ² f ' ' ( z ) ) ' ' > - λ , z Δ , M 1 , λ ( 3 ) = f : R e 1 / 2 ( z ( z ² f ' ( z ) ) ' ' ) ' - 1 > - λ , z Δ . The main purpose of this paper is to find conditions on λ and γ so that each f ∈ is in γ or γ , γ ∈ [0,1/2]. Here γ and γ respectively denote the class of all starlike functions of order γ and the class of all convex functions of order γ. As a consequence, we obtain...