Class groups of large ranks in biquadratic fields
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 2, page 429-436
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topRam, Mahesh Kumar. "Class groups of large ranks in biquadratic fields." Czechoslovak Mathematical Journal 74.2 (2024): 429-436. <http://eudml.org/doc/299402>.
@article{Ram2024,
abstract = {For any integer $n>1$, we provide a parametric family of biquadratic fields with class groups having $n$-rank at least 2. Moreover, in some cases, the $n$-rank is bigger than 4.},
author = {Ram, Mahesh Kumar},
journal = {Czechoslovak Mathematical Journal},
keywords = {ideal class group; biquadratic field},
language = {eng},
number = {2},
pages = {429-436},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Class groups of large ranks in biquadratic fields},
url = {http://eudml.org/doc/299402},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Ram, Mahesh Kumar
TI - Class groups of large ranks in biquadratic fields
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 429
EP - 436
AB - For any integer $n>1$, we provide a parametric family of biquadratic fields with class groups having $n$-rank at least 2. Moreover, in some cases, the $n$-rank is bigger than 4.
LA - eng
KW - ideal class group; biquadratic field
UR - http://eudml.org/doc/299402
ER -
References
top- Ankeny, N. C., Chowla, S., 10.2140/pjm.1955.5.321, Pac. J. Math. 5 (1955), 321-324. (1955) Zbl0065.02402MR0085301DOI10.2140/pjm.1955.5.321
- Chakraborty, K., Hoque, A., Kishi, Y., Pandey, P. P., 10.1016/j.jnt.2017.09.007, J. Number Theory 185 (2018), 339-348. (2018) Zbl1431.11119MR3734353DOI10.1016/j.jnt.2017.09.007
- H. Cohen, H. W. Lenstra, Jr., 10.1007/BFb0099440, Number Theory Lecture Notes in Mathematics 1068. Springer, Berlin (1984), 33-62. (1984) Zbl0558.12002MR0756082DOI10.1007/BFb0099440
- Cohen, H., Martinet, J., 10.1515/crll.1990.404.39, J. Reine Angew. Math. 404 (1990), 39-76 French. (1990) Zbl0699.12016MR1037430DOI10.1515/crll.1990.404.39
- Gillibert, J., Gillibert, P., 10.1142/S1793042122500646, Int. J. Number Theory 18 (2022), 1261-1288. (2022) Zbl1502.11112MR4433140DOI10.1142/S1793042122500646
- Gillibert, J., Levin, A., 10.1007/978-981-15-1514-9_1, Class Groups of Number Fields and Related Topics Springer, Singapore (2020), 1-15. (2020) Zbl1444.11218MR4292539DOI10.1007/978-981-15-1514-9_1
- Ichimura, H., 10.1007/BF02941283, Abh. Math. Sem. Univ. Hamb. 73 (2003), 281-288. (2003) Zbl1050.11090MR2028521DOI10.1007/BF02941283
- Louboutin, S. R., 10.1090/S0002-9939-09-10021-7, Proc. Am. Math. Soc. 137 (2009), 4025-4028. (2009) Zbl1269.11111MR2538563DOI10.1090/S0002-9939-09-10021-7
- Mishra, M., Schoof, R., Washington, L. C., 10.1007/s00605-020-01499-0, Monatsh. Math. 195 (2021), 489-496. (2021) Zbl1472.11277MR4270784DOI10.1007/s00605-020-01499-0
- Murty, M. R., 10.1007/978-1-4613-0305-3_15, Topics in Number Theory Mathematics and its Applications 467. Kluwer Academic, Dordrecht (1999), 229-239. (1999) Zbl0993.11059MR1691322DOI10.1007/978-1-4613-0305-3_15
- Nagell, T., 10.1007/BF02940586, Abh. Math. Semin. Univ. Hamb. 1 (1922), 140-150 German 9999JFM99999 48.0170.03. (1922) MR3069394DOI10.1007/BF02940586
- Nakano, S., 10.1515/crll.1985.358.61, J. Reine Angew. Math. 358 (1985), 61-75. (1985) Zbl0559.12004MR0797674DOI10.1515/crll.1985.358.61
- Schoof, R. J., 10.2307/2007782, Math. Comput. 41 (1983), 295-302. (1983) Zbl0516.12002MR0701640DOI10.2307/2007782
- Silverman, J. H., 10.1007/978-0-387-09494-6, Graduate Texts in Mathematics 106. Springer, Dordrecht (2009). (2009) Zbl1194.11005MR2514094DOI10.1007/978-0-387-09494-6
- Soundararajan, K., 10.1112/S0024610700008887, J. Lond. Math. Soc., II. Ser. 61 (2000), 681-690. (2000) Zbl1018.11054MR1766097DOI10.1112/S0024610700008887
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.