Displaying similar documents to “Class groups of large ranks in biquadratic fields”

Principalization algorithm via class group structure

Daniel C. Mayer (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

For an algebraic number field K with 3 -class group Cl 3 ( K ) of type ( 3 , 3 ) , the structure of the 3 -class groups Cl 3 ( N i ) of the four unramified cyclic cubic extension fields N i , 1 i 4 , of K is calculated with the aid of presentations for the metabelian Galois group G 3 2 ( K ) = Gal ( F 3 2 ( K ) | K ) of the second Hilbert 3 -class field F 3 2 ( K ) of K . In the case of a quadratic base field K = ( D ) it is shown that the structure of the 3 -class groups of the four S 3 -fields N 1 , ... , N 4 frequently determines the type of principalization of the 3 -class group of K in N 1 , ... , N 4 . This...

On the 2 -class group of some number fields with large degree

Mohamed Mahmoud Chems-Eddin, Abdelmalek Azizi, Abdelkader Zekhnini (2021)

Archivum Mathematicum

Similarity:

Let d be an odd square-free integer, m 3 any integer and L m , d : = ( ζ 2 m , d ) . In this paper, we shall determine all the fields L m , d having an odd class number. Furthermore, using the cyclotomic 2 -extensions of some number fields, we compute the rank of the 2 -class group of L m , d whenever the prime divisors of d are congruent to 3 or 5 ( mod 8 ) .

The distribution of second p -class groups on coclass graphs

Daniel C. Mayer (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

General concepts and strategies are developed for identifying the isomorphism type of the second p -class group G = Gal ( F p 2 ( K ) | K ) , that is the Galois group of the second Hilbert p -class field F p 2 ( K ) , of a number field K , for a prime p . The isomorphism type determines the position of G on one of the coclass graphs 𝒢 ( p , r ) , r 0 , in the sense of Eick, Leedham-Green, and Newman. It is shown that, for special types of the base field K and of its p -class group Cl p ( K ) , the position of G is restricted to certain admissible branches...

The Ribes-Zalesskii property of some one relator groups

Gilbert Mantika, Narcisse Temate-Tangang, Daniel Tieudjo (2022)

Archivum Mathematicum

Similarity:

The profinite topology on any abstract group G , is one such that the fundamental system of neighborhoods of the identity is given by all its subgroups of finite index. We say that a group G has the Ribes-Zalesskii property of rank k , or is RZ k with k a natural number, if any product H 1 H 2 H k of finitely generated subgroups H 1 , H 2 , , H k is closed in the profinite topology on G . And a group is said to have the Ribes-Zalesskii property or is RZ if it is RZ k for any natural number k . In this paper we characterize...

Bicyclic commutator quotients with one non-elementary component

Daniel Mayer (2023)

Mathematica Bohemica

Similarity:

For any number field K with non-elementary 3 -class group Cl 3 ( K ) C 3 e × C 3 , e 2 , the punctured capitulation type ϰ ( K ) of K in its unramified cyclic cubic extensions L i , 1 i 4 , is an orbit under the action of S 3 × S 3 . By means of Artin’s reciprocity law, the arithmetical invariant ϰ ( K ) is translated to the punctured transfer kernel type ϰ ( G 2 ) of the automorphism group G 2 = Gal ( F 3 2 ( K ) / K ) of the second Hilbert 3 -class field of K . A classification of finite 3 -groups G with low order and bicyclic commutator quotient G / G ' C 3 e × C 3 , 2 e 6 , according to the algebraic...

The 4-string braid group B 4 has property RD and exponential mesoscopic rank

Sylvain Barré, Mikaël Pichot (2011)

Bulletin de la Société Mathématique de France

Similarity:

We prove that the braid group B 4 on 4 strings, its central quotient B 4 / z , and the automorphism group Aut ( F 2 ) of the free group F 2 on 2 generators, have the property RD of Haagerup–Jolissaint. We also prove that the braid group B 4 is a group of intermediate mesoscopic rank (of dimension 3). More precisely, we show that the above three groups have exponential mesoscopic rank, i.e., that they contain exponentially many large flat balls which are not included in flats.

On the real X -ranks of points of n ( ) with respect to a real variety X n

Edoardo Ballico (2010)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let  X n be an integral and non-degenerate m -dimensional variety defined over . For any P n ( ) the real X -rank r X , ( P ) is the minimal cardinality of S X ( ) such that P S . Here we extend to the real case an upper bound for the X -rank due to Landsberg and Teitler.

Cardinalities of DCCC normal spaces with a rank 2-diagonal

Wei-Feng Xuan, Wei-Xue Shi (2016)

Mathematica Bohemica

Similarity:

A topological space X has a rank 2-diagonal if there exists a diagonal sequence on X of rank 2 , that is, there is a countable family { 𝒰 n : n ω } of open covers of X such that for each x X , { x } = { St 2 ( x , 𝒰 n ) : n ω } . We say that a space X satisfies the Discrete Countable Chain Condition (DCCC for short) if every discrete family of nonempty open subsets of X is countable. We mainly prove that if X is a DCCC normal space with a rank 2-diagonal, then the cardinality of X is at most 𝔠 . Moreover, we prove that if X is a first...

On soluble groups of module automorphisms of finite rank

Bertram A. F. Wehrfritz (2017)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative ring, M an R -module and G a group of R -automorphisms of M , usually with some sort of rank restriction on G . We study the transfer of hypotheses between M / C M ( G ) and [ M , G ] such as Noetherian or having finite composition length. In this we extend recent work of Dixon, Kurdachenko and Otal and of Kurdachenko, Subbotin and Chupordia. For example, suppose [ M , G ] is R -Noetherian. If G has finite rank, then M / C M ( G ) also is R -Noetherian. Further, if [ M , G ] is R -Noetherian and if only certain abelian...

Factorization of CP-rank- 3 completely positive matrices

Jan Brandts, Michal Křížek (2016)

Czechoslovak Mathematical Journal

Similarity:

A symmetric positive semi-definite matrix A is called completely positive if there exists a matrix B with nonnegative entries such that A = B B . If B is such a matrix with a minimal number p of columns, then p is called the cp-rank of A . In this paper we develop a finite and exact algorithm to factorize any matrix A of cp-rank 3 . Failure of this algorithm implies that A does not have cp-rank 3 . Our motivation stems from the question if there exist three nonnegative polynomials of degree at...

The unit groups of semisimple group algebras of some non-metabelian groups of order 144

Gaurav Mittal, Rajendra K. Sharma (2023)

Mathematica Bohemica

Similarity:

We consider all the non-metabelian groups G of order 144 that have exponent either 36 or 72 and deduce the unit group U ( 𝔽 q G ) of semisimple group algebra 𝔽 q G . Here, q denotes the power of a prime, i.e., q = p r for p prime and a positive integer r . Up to isomorphism, there are 6 groups of order 144 that have exponent either 36 or 72 . Additionally, we also discuss how to simply obtain the unit groups of the semisimple group algebras of those non-metabelian groups of order 144 that are a direct product of two...

Possible isolation number of a matrix over nonnegative integers

LeRoy B. Beasley, Young Bae Jun, Seok-Zun Song (2018)

Czechoslovak Mathematical Journal

Similarity:

Let + be the semiring of all nonnegative integers and A an m × n matrix over + . The rank of A is the smallest k such that A can be factored as an m × k matrix times a k × n matrix. The isolation number of A is the maximum number of nonzero entries in A such that no two are in any row or any column, and no two are in a 2 × 2 submatrix of all nonzero entries. We have that the isolation number of A is a lower bound of the rank of A . For A with isolation number k , we investigate the possible values of the...

On prolongations of rank one discrete valuations

Lhoussain El Fadil (2019)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let ( K , ν ) be a valued field, where ν is a rank one discrete valuation. Let R be its ring of valuation, 𝔪 its maximal ideal, and L an extension of K , defined by a monic irreducible polynomial F ( X ) R [ X ] . Assume that F ¯ ( X ) factors as a product of r distinct powers of monic irreducible polynomials. In this paper a condition which guarantees the existence of exactly r distinct valuations of K extending ν is given, in such a way that it generalizes the results given in the paper “Prolongations of valuations...