Continuity of the non-convex play operator in the space of rectifiable curves
Jana Kopfová; Vincenzo Recupero
Applications of Mathematics (2023)
- Volume: 68, Issue: 6, page 727-750
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKopfová, Jana, and Recupero, Vincenzo. "Continuity of the non-convex play operator in the space of rectifiable curves." Applications of Mathematics 68.6 (2023): 727-750. <http://eudml.org/doc/299404>.
@article{Kopfová2023,
abstract = {We prove that the vector play operator with a uniformly prox-regular characteristic set of constraints is continuous with respect to the $\{BV\}$-norm and to the $\{BV\}$-strict metric in the space of rectifiable curves, i.e., in the space of continuous functions of bounded variation. We do not assume any further regularity of the characteristic set. We also prove that the non-convex play operator is rate independent.},
author = {Kopfová, Jana, Recupero, Vincenzo},
journal = {Applications of Mathematics},
keywords = {evolution variational inequalities; play operator; sweeping processes; functions of bounded variation; prox-regular set},
language = {eng},
number = {6},
pages = {727-750},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Continuity of the non-convex play operator in the space of rectifiable curves},
url = {http://eudml.org/doc/299404},
volume = {68},
year = {2023},
}
TY - JOUR
AU - Kopfová, Jana
AU - Recupero, Vincenzo
TI - Continuity of the non-convex play operator in the space of rectifiable curves
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 6
SP - 727
EP - 750
AB - We prove that the vector play operator with a uniformly prox-regular characteristic set of constraints is continuous with respect to the ${BV}$-norm and to the ${BV}$-strict metric in the space of rectifiable curves, i.e., in the space of continuous functions of bounded variation. We do not assume any further regularity of the characteristic set. We also prove that the non-convex play operator is rate independent.
LA - eng
KW - evolution variational inequalities; play operator; sweeping processes; functions of bounded variation; prox-regular set
UR - http://eudml.org/doc/299404
ER -
References
top- Benabdellah, H., 10.1006/jdeq.1999.3756, J. Differ. Equations 164 (2000), 286-295. (2000) Zbl0957.34061MR1765576DOI10.1006/jdeq.1999.3756
- Bounkhel, M., Thibault, L., Nonconvex sweeping process and prox-regularity in Hilbert space, J. Nonlinear Convex Anal. 6 (2005), 359-374. (2005) Zbl1086.49016MR2159846
- Brézis, H., 10.1016/s0304-0208(08)x7125-7, North-Holland Mathematical Studies 5. North-Holland, Amsterdam (1973), French. (1973) Zbl0252.47055MR0348562DOI10.1016/s0304-0208(08)x7125-7
- Brokate, M., Krejčí, P., Schnabel, H., On uniqueness in evolution quasivariational inequalities, J. Convex Anal. 11 (2004), 111-130. (2004) Zbl1061.49006MR2159467
- Brokate, M., Sprekels, J., 10.1007/978-1-4612-4048-8, Applied Mathematical Sciences 121. Springer, New York (1996). (1996) Zbl0951.74002MR1411908DOI10.1007/978-1-4612-4048-8
- Castaing, C., Marques, M. D. P. Monteiro, Evolution problems associated with nonconvex closed moving sets with bounded variation, Port. Math. 53 (1996), 73-87. (1996) Zbl0848.35052MR1384501
- Clarke, F. H., Stern, R. J., Wolenski, P. R., Proximal smoothness and the lower- property, J. Convex Anal. 2 (1995), 117-144. (1995) Zbl0881.49008MR1363364
- Colombo, G., Goncharov, V. V., 10.1023/A:1008774529556, Set-Valued Anal. 7 (1999), 357-374. (1999) Zbl0957.34060MR1756914DOI10.1023/A:1008774529556
- Colombo, G., Marques, M. D. P. Monteiro, 10.1016/S0022-0396(02)00021-9, J. Differ. Equations 187 (2003), 46-62. (2003) Zbl1029.34052MR1946545DOI10.1016/S0022-0396(02)00021-9
- Colombo, G., Thibault, L., Prox-regular sets and applications, Handbook of Nonconvex Analysis and Applications International Press, Somerville (2010), 99-182. (2010) Zbl1221.49001MR2768810
- J. Diestel, J. J. Uhl, Jr., 10.1090/surv/015, Mathematical Surveys 15. AMS, Providence (1977). (1977) Zbl0369.46039MR0453964DOI10.1090/surv/015
- Dinculeanu, N., Vector Measures, International Series of Monographs in Pure and Applied Mathematics 95. Pergamon Press, Berlin (1967). (1967) Zbl0142.10502MR0206190
- Edmond, J. F., Thibault, L., 10.1016/j.jde.2005.12.005, J. Differ. Equations 226 (2006), 135-179. (2006) Zbl1110.34038MR2232433DOI10.1016/j.jde.2005.12.005
- Federer, H., 10.1090/S0002-9947-1959-0110078-1, Trans. Am. Math. Soc. 93 (1959), 418-491. (1959) Zbl0089.38402MR0110078DOI10.1090/S0002-9947-1959-0110078-1
- Federer, H., 10.1007/978-3-642-62010-2, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 153. Springer, Berlin (1969). (1969) Zbl0176.00801MR0257325DOI10.1007/978-3-642-62010-2
- Klein, O., Recupero, V., 10.1088/1742-6596/727/1/012006, J. Phys., Conf. Ser. 727 (2016), Article ID 012006, 12 pages. (2016) Zbl1366.46062MR3566835DOI10.1088/1742-6596/727/1/012006
- Kopfová, J., Recupero, V., 10.1016/j.jde.2016.08.025, J. Differ. Equations 261 (2016), 5875-5899. (2016) Zbl1354.34112MR3548274DOI10.1016/j.jde.2016.08.025
- Krasnosel'skij, M. A., Pokrovskij, A. V., 10.1007/978-3-642-61302-9, Springer, Berlin (1989). (1989) Zbl0665.47038MR0987431DOI10.1007/978-3-642-61302-9
- Krejčí, P., 10.1017/S0956792500000541, Eur. J. Appl. Math. 2 (1991), 281-292. (1991) Zbl0754.73015MR1123144DOI10.1017/S0956792500000541
- Krejčí, P., Hysteresis, Convexity and Dissipation in Hyperbolic Equations, GAKUTO International Series. Mathematical Sciences and Applications 8. Gakkotosho, Tokyo (1996). (1996) Zbl1187.35003MR2466538
- Krejčí, P., Monteiro, G. A., Recupero, V., 10.1007/s00245-021-09801-8, Appl. Math. Optim. 84, Suppl. 2 (2021), 1477-1504. (2021) Zbl1495.34087MR4356901DOI10.1007/s00245-021-09801-8
- Krejčí, P., Monteiro, G. A., Recupero, V., 10.3934/cpaa.2022087, Commun. Pure Appl. Anal. 21 (2022), 2999-3029. (2022) Zbl07606668MR4484114DOI10.3934/cpaa.2022087
- Krejčí, P., Roche, T., 10.3934/dcdsb.2011.15.637, Discrete Contin. Dyn. Syst., Ser. B 15 (2011), 637-650. (2011) Zbl1214.49022MR2774131DOI10.3934/dcdsb.2011.15.637
- Lang, S., 10.1007/978-1-4612-0897-6, Graduate Texts in Mathematics 142. Springer, New York (1993). (1993) Zbl0831.46001MR1216137DOI10.1007/978-1-4612-0897-6
- Mayergoyz, I. D., 10.1007/978-1-4612-3028-1, Springer, New York (1991). (1991) Zbl0723.73003MR1083150DOI10.1007/978-1-4612-3028-1
- Mielke, A., Roubíček, T., 10.1007/978-1-4939-2706-7, Applied Mathematical Sciences 193. Springer, New York (2015). (2015) Zbl1339.35006MR3380972DOI10.1007/978-1-4939-2706-7
- Poliquin, R. A., Rockafellar, R. T., Thibault, L., 10.1090/S0002-9947-00-02550-2, Trans. Am. Math. Soc. 352 (2000), 5231-5249. (2000) Zbl0960.49018MR1694378DOI10.1090/S0002-9947-00-02550-2
- Recupero, V., 10.1002/mma.968, Math. Methods Appl. Sci. 31 (2008), 1283-1295. (2008) Zbl1140.74021MR2431427DOI10.1002/mma.968
- Recupero, V., 10.1002/mma.1124, Math. Methods Appl. Sci. 32 (2009), 2003-2018. (2009) Zbl1214.47081MR2560936DOI10.1002/mma.1124
- Recupero, V., 10.2422/2036-2145.2011.2.02, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 10 (2011), 269-315. (2011) Zbl1229.49012MR2856149DOI10.2422/2036-2145.2011.2.02
- Recupero, V., 10.1016/j.jde.2015.05.019, J. Differ. Equations 259 (2015), 4253-4272. (2015) Zbl1322.49014MR3369277DOI10.1016/j.jde.2015.05.019
- Recupero, V., Sweeping processes and rate independence, J. Convex Anal. 23 (2016), 921-946. (2016) Zbl1357.34103MR3533181
- Recupero, V., Convex valued geodesics and applications to sweeping processes with bounded retraction, J. Convex Anal. 27 (2020), 535-556. (2020) Zbl1444.34075MR4058035
- Venel, J., 10.1007/s00211-010-0329-0, Numer. Math. 118 (2011), 367-400. (2011) Zbl1222.65064MR2800713DOI10.1007/s00211-010-0329-0
- Vial, J.-P., 10.1287/moor.8.2.231, Math. Oper. Res. 8 (1983), 231-259. (1983) Zbl0526.90077MR0707055DOI10.1287/moor.8.2.231
- Visintin, A., 10.1007/978-3-662-11557-2, Applied Mathematical Sciences 111. Springer, Berlin (1994). (1994) Zbl0820.35004MR1329094DOI10.1007/978-3-662-11557-2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.