A new uncertainty-aware similarity for user-based collaborative filtering

Khadidja Belmessous; Faouzi Sebbak; M'hamed Mataoui; Walid Cherifi

Kybernetika (2024)

  • Issue: 4, page 446-474
  • ISSN: 0023-5954

Abstract

top
User-based Collaborative Filtering (UBCF) is a common approach in Recommender Systems (RS). Essentially, UBCF predicts unprovided entries for the target user by selecting similar neighbors. The effectiveness of UBCF greatly depends on the selected similarity measure and the subsequent choice of neighbors. This paper presents a new Uncertainty-Aware Similarity measure "UASim" which enhances CF by accurately calculating how similar, dissimilar, and uncertain users' preferences are. Uncertainty is a key factor of "UASim" that is managed in the neighborhood selection step of CF. Extensive experimental evaluation, conducted on Flixter, Movielens-100K, and Movielens-1M datasets, indicates that "UASim" shows better performance compared to many representative predefined similarity measures. The proposed measure demonstrates enhancements across various performance indicators, namely: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), coverage, and the F-score.

How to cite

top

Belmessous, Khadidja, et al. "A new uncertainty-aware similarity for user-based collaborative filtering." Kybernetika (2024): 446-474. <http://eudml.org/doc/299405>.

@article{Belmessous2024,
abstract = {User-based Collaborative Filtering (UBCF) is a common approach in Recommender Systems (RS). Essentially, UBCF predicts unprovided entries for the target user by selecting similar neighbors. The effectiveness of UBCF greatly depends on the selected similarity measure and the subsequent choice of neighbors. This paper presents a new Uncertainty-Aware Similarity measure "UASim" which enhances CF by accurately calculating how similar, dissimilar, and uncertain users' preferences are. Uncertainty is a key factor of "UASim" that is managed in the neighborhood selection step of CF. Extensive experimental evaluation, conducted on Flixter, Movielens-100K, and Movielens-1M datasets, indicates that "UASim" shows better performance compared to many representative predefined similarity measures. The proposed measure demonstrates enhancements across various performance indicators, namely: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), coverage, and the F-score.},
author = {Belmessous, Khadidja, Sebbak, Faouzi, Mataoui, M'hamed, Cherifi, Walid},
journal = {Kybernetika},
keywords = {collaborative filtering; similarity; subjective logic; uncertainty},
language = {eng},
number = {4},
pages = {446-474},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A new uncertainty-aware similarity for user-based collaborative filtering},
url = {http://eudml.org/doc/299405},
year = {2024},
}

TY - JOUR
AU - Belmessous, Khadidja
AU - Sebbak, Faouzi
AU - Mataoui, M'hamed
AU - Cherifi, Walid
TI - A new uncertainty-aware similarity for user-based collaborative filtering
JO - Kybernetika
PY - 2024
PB - Institute of Information Theory and Automation AS CR
IS - 4
SP - 446
EP - 474
AB - User-based Collaborative Filtering (UBCF) is a common approach in Recommender Systems (RS). Essentially, UBCF predicts unprovided entries for the target user by selecting similar neighbors. The effectiveness of UBCF greatly depends on the selected similarity measure and the subsequent choice of neighbors. This paper presents a new Uncertainty-Aware Similarity measure "UASim" which enhances CF by accurately calculating how similar, dissimilar, and uncertain users' preferences are. Uncertainty is a key factor of "UASim" that is managed in the neighborhood selection step of CF. Extensive experimental evaluation, conducted on Flixter, Movielens-100K, and Movielens-1M datasets, indicates that "UASim" shows better performance compared to many representative predefined similarity measures. The proposed measure demonstrates enhancements across various performance indicators, namely: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), coverage, and the F-score.
LA - eng
KW - collaborative filtering; similarity; subjective logic; uncertainty
UR - http://eudml.org/doc/299405
ER -

References

top
  1. al., Ch. C. Aggarwal et, Recommender systems, volume 1., 2016. 
  2. Aherne, F. J., Thacker, N. A., Rockett, P. I., , Kybernetika 34 (1998), 4, 363-368. MR1658937DOI
  3. Ahn, H. J., , Inform. Sci. 178 (2008), 1, 37-51. DOI
  4. Al-Bashiri, H., Abdulgabber, M. A., Romli, A., Kahtan, H., , PloS one 13 (2018), 10. e0204434. DOI
  5. Amer, A. A, Abdalla, H. I., Nguyen, L., , Knowledge-Based Systems 217 (2021), 106842. DOI
  6. Anand, P. B., Nath, R., Content-based recommender systems., In: Recommender System with Machine Learning and Artificial Intelligence: Practical Tools and Applications in Medical, Agricultural and Other Industries. 2020, pp. 165-195. 
  7. Ar, Y., Amrahov, Ş. E., Gasilov, N. A., Y.-Sert, S., , Kybernetika 58 (2022), 3, 440-455. DOI
  8. Belmessous, K., Sebbak, F., Batouche, A., al., et, , In: International Conference on Computing Systems and Applications, Springer 2022, 51-60. DOI
  9. Chen, M., Liu, P., , Int. J. Performability Engrg. 13 (2017), 8, 1246. DOI
  10. Dewi, R. K., Widodo, A. W., Sari, Y. A., Aziz, N. I. M., Rank consistency of topsis in mobile based recommendation system., In: Proc. 5th International Conference on Sustainable Information Engineering and Technology, ACM Digital Library 2020, pp. 107-112. 
  11. Feng, J., Fengs, X., Zhang, N., Peng, J., , PLoS One 13 (2018), 9, e0204003. DOI
  12. Fkih, Fethi, Similarity measures for collaborative filtering-based recommender systems: Review and experimental comparison., Journal of King Saud University-Computer and Information Sciences, 2021. 
  13. Forouzandeh, S., Rostami, M., Berahmand, K., , Fuzzy Inform. Engrg. 14 (2022), 1, 26-50. DOI
  14. Gavalas, D., Konstantopoulos, Ch., Mastakas, K., Pantziou, G., , J. Network Computer Appl. 39 (2014), 319-333. DOI
  15. Gazdar, A., Hidri, L., , Knowledge-Based Syst. 188 (2020), 105058. DOI
  16. Guo, G., Zhang, J., Yorke-Smith, N., A novel bayesian similarity measure for recommender systems., In ACM, editor, Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI), pages 2619-2625, 2013. 
  17. Harper, F. M., Konstan, J. A., The movielens datasets: History and context., ACM Trans. Int. Intell. Systems (TIIS) 5 (2015), 4, 1-19. 
  18. Hwang, Ch. L., Yoon, K., Multiple Attribute Decision Making: Methods and Applications A State-Of-The-Art Survey, volume 186., Springer Science Business Media, 2012. MR0610245
  19. Idrissi, N., Zellou, A., A systematic literature review of sparsity issues in recommender systems., Social Network Anal. Mining 10 (2020), 1, 1-23. 
  20. Jøsang, A., , Int. J. Uncertainty, Fuzziness Knowledge-Based Syst. 9 (2001), 3, 279-311. MR1843261DOI
  21. Jøsang, A., Subjective Logic, volume 4., 2016. 
  22. Karimi, M., Jannach, D., Jugovac, M., , Inform. Process. Management 54 (2018), 6, 1203-1227. DOI
  23. Khojamli, H., Razmara, J., , Expert Syst. Appl. 185 (2021), 115482. DOI
  24. Kim, K., , Appl. Intell. 53 (2023), 23, 28804-28818. DOI
  25. Chetana, V. L., Seetha, H., , J. Inform. Knowledge Management (2024), 2450021. DOI
  26. Liu, H., Hu, Z., Mian, A., Tian, H., Zhu, X., , Knowledge-Based Syst. 56 (2014), 156-166. DOI
  27. Manochandar, S., Punniyamoorthy, M., , Appl. Intell. 51 (2021), 1, 586-615. DOI
  28. Mataoui, M., Sebbak, F., Sidhoum, A. H., Harbi, T. E., Senouci, M. R., Belmessous, K., , Social Network Anal. Mining 13 (2023), 1. 53. DOI
  29. Olson, D. L., , Math. Comput. Modell. 40 (2004), 7-8, 721-727. MR2106163DOI
  30. Papadakis, H., Papagrigoriou, An., Panagiotakis, C., Kosmas, E., Fragopoulou, P., , Knowledge Inform. Syst. 64 (2022), 1, 35-74. DOI
  31. Patra, B. K., Launonen, R., Ollikainen, V., Nandi, S., , Knowledge-Based Syst. 82 (2015), 163-177. DOI
  32. Ricci, F., Rokach, L., Shapira, B., Context-aware recommender systems: recommender systems handbook., In: Recommender Systems Handbook, Springer, 2011, pp. 217-253. 
  33. Roy, D., Dutta, M., , J. Big Data 9 (2022), 1, 59. DOI
  34. Sánchez, P., Bellogín, A., , Inform. Process. Management 56 (2019), 1, 192-211. DOI
  35. Seth, R., Sharaff, A., , Data Mining Machine Learning Appl. (2022), 57-98. DOI
  36. Shojaei, M., Saneifar, H., , Expert Systems Appl. 177 (2021), 114969. DOI
  37. Valcarce, D., Parapar, J., Barreiro, Á., , Knowledge-Based Syst. 159 (2018), 193-202. DOI
  38. Wang, D., Yih, Y., Ventresca, M., , Expert Syst. Appl. 160 (2020), 113651. DOI
  39. Wang, Y., Deng, J., Gao, J., Zhang, P., , Inform. Sci. 418 (2017), 102-118. DOI
  40. Wang, Y., Wang, P., Liu, Z., Zhang, L. Y., , Expert Syst. Appl. 166 (2021), 114074. DOI
  41. Wu, X., Cheng, B., Chen, J., , IEEE Trans. Services Comput. 10 (2015), 3, 352-365. DOI
  42. Wu, X., Huang, Y., Wang, S., , In: 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), IEEE, 2017, pp. 1-5. DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.