A new uncertainty-aware similarity for user-based collaborative filtering
Khadidja Belmessous; Faouzi Sebbak; M'hamed Mataoui; Walid Cherifi
Kybernetika (2024)
- Issue: 4, page 446-474
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topBelmessous, Khadidja, et al. "A new uncertainty-aware similarity for user-based collaborative filtering." Kybernetika (2024): 446-474. <http://eudml.org/doc/299405>.
@article{Belmessous2024,
abstract = {User-based Collaborative Filtering (UBCF) is a common approach in Recommender Systems (RS). Essentially, UBCF predicts unprovided entries for the target user by selecting similar neighbors. The effectiveness of UBCF greatly depends on the selected similarity measure and the subsequent choice of neighbors. This paper presents a new Uncertainty-Aware Similarity measure "UASim" which enhances CF by accurately calculating how similar, dissimilar, and uncertain users' preferences are. Uncertainty is a key factor of "UASim" that is managed in the neighborhood selection step of CF. Extensive experimental evaluation, conducted on Flixter, Movielens-100K, and Movielens-1M datasets, indicates that "UASim" shows better performance compared to many representative predefined similarity measures. The proposed measure demonstrates enhancements across various performance indicators, namely: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), coverage, and the F-score.},
author = {Belmessous, Khadidja, Sebbak, Faouzi, Mataoui, M'hamed, Cherifi, Walid},
journal = {Kybernetika},
keywords = {collaborative filtering; similarity; subjective logic; uncertainty},
language = {eng},
number = {4},
pages = {446-474},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A new uncertainty-aware similarity for user-based collaborative filtering},
url = {http://eudml.org/doc/299405},
year = {2024},
}
TY - JOUR
AU - Belmessous, Khadidja
AU - Sebbak, Faouzi
AU - Mataoui, M'hamed
AU - Cherifi, Walid
TI - A new uncertainty-aware similarity for user-based collaborative filtering
JO - Kybernetika
PY - 2024
PB - Institute of Information Theory and Automation AS CR
IS - 4
SP - 446
EP - 474
AB - User-based Collaborative Filtering (UBCF) is a common approach in Recommender Systems (RS). Essentially, UBCF predicts unprovided entries for the target user by selecting similar neighbors. The effectiveness of UBCF greatly depends on the selected similarity measure and the subsequent choice of neighbors. This paper presents a new Uncertainty-Aware Similarity measure "UASim" which enhances CF by accurately calculating how similar, dissimilar, and uncertain users' preferences are. Uncertainty is a key factor of "UASim" that is managed in the neighborhood selection step of CF. Extensive experimental evaluation, conducted on Flixter, Movielens-100K, and Movielens-1M datasets, indicates that "UASim" shows better performance compared to many representative predefined similarity measures. The proposed measure demonstrates enhancements across various performance indicators, namely: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), coverage, and the F-score.
LA - eng
KW - collaborative filtering; similarity; subjective logic; uncertainty
UR - http://eudml.org/doc/299405
ER -
References
top- al., Ch. C. Aggarwal et, Recommender systems, volume 1., 2016.
- Aherne, F. J., Thacker, N. A., Rockett, P. I., , Kybernetika 34 (1998), 4, 363-368. MR1658937DOI
- Ahn, H. J., , Inform. Sci. 178 (2008), 1, 37-51. DOI
- Al-Bashiri, H., Abdulgabber, M. A., Romli, A., Kahtan, H., , PloS one 13 (2018), 10. e0204434. DOI
- Amer, A. A, Abdalla, H. I., Nguyen, L., , Knowledge-Based Systems 217 (2021), 106842. DOI
- Anand, P. B., Nath, R., Content-based recommender systems., In: Recommender System with Machine Learning and Artificial Intelligence: Practical Tools and Applications in Medical, Agricultural and Other Industries. 2020, pp. 165-195.
- Ar, Y., Amrahov, Ş. E., Gasilov, N. A., Y.-Sert, S., , Kybernetika 58 (2022), 3, 440-455. DOI
- Belmessous, K., Sebbak, F., Batouche, A., al., et, , In: International Conference on Computing Systems and Applications, Springer 2022, 51-60. DOI
- Chen, M., Liu, P., , Int. J. Performability Engrg. 13 (2017), 8, 1246. DOI
- Dewi, R. K., Widodo, A. W., Sari, Y. A., Aziz, N. I. M., Rank consistency of topsis in mobile based recommendation system., In: Proc. 5th International Conference on Sustainable Information Engineering and Technology, ACM Digital Library 2020, pp. 107-112.
- Feng, J., Fengs, X., Zhang, N., Peng, J., , PLoS One 13 (2018), 9, e0204003. DOI
- Fkih, Fethi, Similarity measures for collaborative filtering-based recommender systems: Review and experimental comparison., Journal of King Saud University-Computer and Information Sciences, 2021.
- Forouzandeh, S., Rostami, M., Berahmand, K., , Fuzzy Inform. Engrg. 14 (2022), 1, 26-50. DOI
- Gavalas, D., Konstantopoulos, Ch., Mastakas, K., Pantziou, G., , J. Network Computer Appl. 39 (2014), 319-333. DOI
- Gazdar, A., Hidri, L., , Knowledge-Based Syst. 188 (2020), 105058. DOI
- Guo, G., Zhang, J., Yorke-Smith, N., A novel bayesian similarity measure for recommender systems., In ACM, editor, Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI), pages 2619-2625, 2013.
- Harper, F. M., Konstan, J. A., The movielens datasets: History and context., ACM Trans. Int. Intell. Systems (TIIS) 5 (2015), 4, 1-19.
- Hwang, Ch. L., Yoon, K., Multiple Attribute Decision Making: Methods and Applications A State-Of-The-Art Survey, volume 186., Springer Science Business Media, 2012. MR0610245
- Idrissi, N., Zellou, A., A systematic literature review of sparsity issues in recommender systems., Social Network Anal. Mining 10 (2020), 1, 1-23.
- Jøsang, A., , Int. J. Uncertainty, Fuzziness Knowledge-Based Syst. 9 (2001), 3, 279-311. MR1843261DOI
- Jøsang, A., Subjective Logic, volume 4., 2016.
- Karimi, M., Jannach, D., Jugovac, M., , Inform. Process. Management 54 (2018), 6, 1203-1227. DOI
- Khojamli, H., Razmara, J., , Expert Syst. Appl. 185 (2021), 115482. DOI
- Kim, K., , Appl. Intell. 53 (2023), 23, 28804-28818. DOI
- Chetana, V. L., Seetha, H., , J. Inform. Knowledge Management (2024), 2450021. DOI
- Liu, H., Hu, Z., Mian, A., Tian, H., Zhu, X., , Knowledge-Based Syst. 56 (2014), 156-166. DOI
- Manochandar, S., Punniyamoorthy, M., , Appl. Intell. 51 (2021), 1, 586-615. DOI
- Mataoui, M., Sebbak, F., Sidhoum, A. H., Harbi, T. E., Senouci, M. R., Belmessous, K., , Social Network Anal. Mining 13 (2023), 1. 53. DOI
- Olson, D. L., , Math. Comput. Modell. 40 (2004), 7-8, 721-727. MR2106163DOI
- Papadakis, H., Papagrigoriou, An., Panagiotakis, C., Kosmas, E., Fragopoulou, P., , Knowledge Inform. Syst. 64 (2022), 1, 35-74. DOI
- Patra, B. K., Launonen, R., Ollikainen, V., Nandi, S., , Knowledge-Based Syst. 82 (2015), 163-177. DOI
- Ricci, F., Rokach, L., Shapira, B., Context-aware recommender systems: recommender systems handbook., In: Recommender Systems Handbook, Springer, 2011, pp. 217-253.
- Roy, D., Dutta, M., , J. Big Data 9 (2022), 1, 59. DOI
- Sánchez, P., Bellogín, A., , Inform. Process. Management 56 (2019), 1, 192-211. DOI
- Seth, R., Sharaff, A., , Data Mining Machine Learning Appl. (2022), 57-98. DOI
- Shojaei, M., Saneifar, H., , Expert Systems Appl. 177 (2021), 114969. DOI
- Valcarce, D., Parapar, J., Barreiro, Á., , Knowledge-Based Syst. 159 (2018), 193-202. DOI
- Wang, D., Yih, Y., Ventresca, M., , Expert Syst. Appl. 160 (2020), 113651. DOI
- Wang, Y., Deng, J., Gao, J., Zhang, P., , Inform. Sci. 418 (2017), 102-118. DOI
- Wang, Y., Wang, P., Liu, Z., Zhang, L. Y., , Expert Syst. Appl. 166 (2021), 114074. DOI
- Wu, X., Cheng, B., Chen, J., , IEEE Trans. Services Comput. 10 (2015), 3, 352-365. DOI
- Wu, X., Huang, Y., Wang, S., , In: 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), IEEE, 2017, pp. 1-5. DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.