Solving elastodynamic problems of 2D quasicrystals in inhomogeneous media
Applications of Mathematics (2024)
- Volume: 69, Issue: 3, page 289-309
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topAltunkaynak, Meltem. "Solving elastodynamic problems of 2D quasicrystals in inhomogeneous media." Applications of Mathematics 69.3 (2024): 289-309. <http://eudml.org/doc/299410>.
@article{Altunkaynak2024,
abstract = {Initial value problem for three dimensional (3D) elastodynamic system in two dimensional (2D) inhomogeneous quasicrystals is considered. An analytical method is studied for the solution of this problem. The system is written in terms of Fourier images of displacements with respect to lateral variables. The resulting problem is reduced to integral equations of the Volterra type. Finally, using Paley Wiener theorem it is shown that the solution of the initial value problem can be found by the inverse Fourier transform. A numerical example is considered for the comparison of the exact solution with the computed solution obtained by using the method.},
author = {Altunkaynak, Meltem},
journal = {Applications of Mathematics},
keywords = {2D quasicrystals; inhomogeneous media; elastodynamic system},
language = {eng},
number = {3},
pages = {289-309},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Solving elastodynamic problems of 2D quasicrystals in inhomogeneous media},
url = {http://eudml.org/doc/299410},
volume = {69},
year = {2024},
}
TY - JOUR
AU - Altunkaynak, Meltem
TI - Solving elastodynamic problems of 2D quasicrystals in inhomogeneous media
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 3
SP - 289
EP - 309
AB - Initial value problem for three dimensional (3D) elastodynamic system in two dimensional (2D) inhomogeneous quasicrystals is considered. An analytical method is studied for the solution of this problem. The system is written in terms of Fourier images of displacements with respect to lateral variables. The resulting problem is reduced to integral equations of the Volterra type. Finally, using Paley Wiener theorem it is shown that the solution of the initial value problem can be found by the inverse Fourier transform. A numerical example is considered for the comparison of the exact solution with the computed solution obtained by using the method.
LA - eng
KW - 2D quasicrystals; inhomogeneous media; elastodynamic system
UR - http://eudml.org/doc/299410
ER -
References
top- Altunkaynak, M., 10.1002/mma.5510, Math. Methods Appl. Sci. 42 (2019), 2324-2333. (2019) Zbl1420.35154MR3936402DOI10.1002/mma.5510
- Andersen, N. B., 10.2140/pjm.2004.213.1, Pac. J. Math. 213 (2004), 1-13. (2004) Zbl1049.43004MR2040247DOI10.2140/pjm.2004.213.1
- Chen, J., Liu, Z., Zou, Z., 10.1016/S0020-7225(02)00038-1, Int. J. Eng. Sci. 40 (2002), 1761-1774. (2002) DOI10.1016/S0020-7225(02)00038-1
- Chen, W. Q., Ma, Y. L., Ding, H. J., 10.1016/j.mechrescom.2004.03.007, Mech. Res. Commun. 31 (2004), 633-641. (2004) Zbl1098.74554MR2092970DOI10.1016/j.mechrescom.2004.03.007
- Daros, C. H., 10.1016/j.ijengsci.2008.02.001, Int. J. Eng. Sci. 46 (2008), 809-817. (2008) Zbl1213.74156MR2427933DOI10.1016/j.ijengsci.2008.02.001
- Daros, C. H., 10.1016/j.wavemoti.2009.02.001, Wave Motion 46 (2009), 269-279. (2009) Zbl1231.74172MR2568578DOI10.1016/j.wavemoti.2009.02.001
- De, P., Pelcovits, R. A., 10.1103/PhysRevB.35.8609, Phys. Rev. B 35 (1987), Article ID 8609, 12 pages. (1987) DOI10.1103/PhysRevB.35.8609
- Ding, D.-H., Wang, R., Yang, W., Hu, C., 10.1088/0953-8984/7/28/003, J. Phys., Conden. Matt. 7 (1995), Article ID 5423, 14 pages. (1995) DOI10.1088/0953-8984/7/28/003
- Ding, D.-H., Yang, W., Hu, C., Wang, R., 10.1103/PhysRevB.48.7003, Phys. Rev. B 48 (1993), Article ID 7003, 8 pages. (1993) DOI10.1103/PhysRevB.48.7003
- Ding, H., Chenbuo, Liangjian, 10.1016/0020-7683(95)00152-2, Int. J. Solids Struct. 33 (1996), 2283-2298. (1996) Zbl0899.73453DOI10.1016/0020-7683(95)00152-2
- Fan, T., 10.1007/978-3-642-14643-5, Springer, Berlin (2011). (2011) Zbl1222.74003MR2847904DOI10.1007/978-3-642-14643-5
- Fan, T.-Y., Mai, Y.-W., 10.1115/1.1763591, Appl. Mech. Rev. 57 (2004), 325-343. (2004) DOI10.1115/1.1763591
- Gao, Y., 10.1016/j.physleta.2009.01.002, Phys. Lett., A 373 (2009), 885-889. (2009) Zbl1236.74048DOI10.1016/j.physleta.2009.01.002
- Gao, Y., Xu, S.-P., Zhao, B.-S., 10.1088/0031-8949/77/01/015601, Phys. Scr. 77 (2008), Article ID 015601, 6 pages. (2008) Zbl1157.82395DOI10.1088/0031-8949/77/01/015601
- Gao, Y., Zhao, B.-S., 10.1002/pssb.200541400, Phys. Status Solid., B 243 (2006), 4007-4019. (2006) DOI10.1002/pssb.200541400
- Gao, Y., Zhao, B.-S., 10.1016/j.apm.2008.11.001, Appl. Math. Modelling 33 (2009), 3382-3391. (2009) Zbl1205.74023MR2524125DOI10.1016/j.apm.2008.11.001
- Holford, R. L., 10.1121/1.387099, J. Acoust. Soc. Am. 70 (1981), 1427-1436. (1981) Zbl0478.35030MR0634323DOI10.1121/1.387099
- Hook, J. F., 10.1115/1.3640544, J. Appl. Mech. 29 (1962), 293-298. (1962) Zbl0107.41902MR0138265DOI10.1115/1.3640544
- Hu, C., Wang, R., Ding, D.-H., 10.1088/0034-4885/63/1/201, Rep. Progr. Phys. 63 (2000), Article ID 63, 39 pages. (2000) MR1732137DOI10.1088/0034-4885/63/1/201
- Levine, D., Steinhardt, P. J., 10.1103/PhysRevLett.53.2477, Phys. Rev. Lett. 53 (1984), Article ID 2477, 4 pages. (1984) MR0831879DOI10.1103/PhysRevLett.53.2477
- Li, L.-H., Fan, T.-Y., 10.1088/0256-307X/23/9/047, Chin. Phys. Lett. 23 (2006), Article ID 2519, 3 pages. (2006) DOI10.1088/0256-307X/23/9/047
- Liu, G. T., Fan, T. Y., Guo, R. P., 10.1016/j.ijsolstr.2004.02.028, Int. J. Solids Struct. 41 (2004), 3949-3959. (2004) Zbl1079.74524MR2215812DOI10.1016/j.ijsolstr.2004.02.028
- Manolis, G. D., Shaw, R. P., 10.1016/S0955-7997(00)00056-4, Eng. Anal. Bound. Elem. 24 (2000), 739-750. (2000) Zbl0971.74046DOI10.1016/S0955-7997(00)00056-4
- Ovid'ko, I. A., 10.1016/0921-5093(92)90359-9, Mater. Sci. Eng., A 154 (1992), 29-33. (1992) DOI10.1016/0921-5093(92)90359-9
- Peng, Y.-Z., Fan, T.-Y, 10.1016/S0921-4526(01)00611-1, Physica B 311 (2002), 326-330. (2002) DOI10.1016/S0921-4526(01)00611-1
- Rangelov, T. V., Manolis, G. D., Dineva, P. S., 10.1016/j.euromechsol.2005.05.002, Eur. J. Mech., A, Solids 24 (2005), 820-836 9999DOI99999 10.1016/j.euromechsol.2005.05.002 . (2005) Zbl1125.74344MR2174322DOI10.1016/j.euromechsol.2005.05.002
- Rochal, S. B., Lebedyuk, I. V., Kozinkina, Y. A., 10.1103/PhysRevB.60.865, Phys. Rev., B 60 (1999), Article ID 865, 9 pages. (1999) DOI10.1103/PhysRevB.60.865
- Shechtman, D., Blech, I., Gratias, D., Cahn, J. W., 10.1103/PhysRevLett.53.1951, Phys. Rev. Lett. 53 (1984), Article ID 1951, 3 pages. (1984) DOI10.1103/PhysRevLett.53.1951
- Slawinski, M. A., 10.1142/11994, World Scientific, Hackensack (2021). (2021) Zbl1459.74002DOI10.1142/11994
- Socolar, J. E. S., Lubensky, T. C., Steinhardt, P. J., 10.1103/PhysRevB.34.3345, Phys. Rev., B 34 (1986), Article ID 3345, 16 pages. (1986) DOI10.1103/PhysRevB.34.3345
- Wang, X., 10.1016/j.mechrescom.2005.02.022, Mech. Res. Commun. 33 (2006), 576-580. (2006) Zbl1192.74069MR2215812DOI10.1016/j.mechrescom.2005.02.022
- Watanabe, K., 10.1299/jsme1958.25.315, Bull. JSME 25 (1982), 315-320. (1982) DOI10.1299/jsme1958.25.315
- Watanabe, K., Payton, R. G., 10.1016/j.ijengsci.2004.08.001, Int. J. Eng. Sci. 42 (2004), 2087-2106. (2004) Zbl1211.74123MR2102742DOI10.1016/j.ijengsci.2004.08.001
- Yakhno, V., 10.1002/mma.7373, Math. Methods Appl. Sci. 44 (2021), 9487-9506. (2021) Zbl1475.35338MR4279862DOI10.1002/mma.7373
- Yakhno, V. G., Sevimlican, A., 10.1016/j.amc.2009.11.027, Appl. Math. Comput. 215 (2010), 3839-3850. (2010) Zbl1188.78003MR2578849DOI10.1016/j.amc.2009.11.027
- Yakhno, V., Sevimlican, A., 10.1007/s10492-011-0019-y, Appl. Math., Praha 56 (2011), 315-339. (2011) Zbl1224.35392MR2800581DOI10.1007/s10492-011-0019-y
- Yakhno, V. G., Yaslan, H. Ç, 10.1016/j.apm.2010.12.019, Appl. Math. Modelling 35 (2011), 3092-3110. (2011) Zbl1219.74010MR2776264DOI10.1016/j.apm.2010.12.019
- Yang, L. Z., Zhang, L. L., Gao, Y., 10.4028/www.scientific.net/AMM.275-277.101, Appl. Mech. Mater. 275-277 (2013), 101-104. (2013) DOI10.4028/www.scientific.net/AMM.275-277.101
- Zhang, L., Zhang, Y., Gao, Y., 10.1016/j.physleta.2014.07.027, Phys. Lett., A 378 (2014), 2768-2776. (2014) Zbl1298.74027MR3250390DOI10.1016/j.physleta.2014.07.027
- Zhou, W.-M., Fan, T.-Y., 10.1088/1009-1963/9/4/009, Chin. Phys. 9 (2000), Article ID 294, 10 pages. (2000) DOI10.1088/1009-1963/9/4/009
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.