Solving elastodynamic problems of 2D quasicrystals in inhomogeneous media

Meltem Altunkaynak

Applications of Mathematics (2024)

  • Volume: 69, Issue: 3, page 289-309
  • ISSN: 0862-7940

Abstract

top
Initial value problem for three dimensional (3D) elastodynamic system in two dimensional (2D) inhomogeneous quasicrystals is considered. An analytical method is studied for the solution of this problem. The system is written in terms of Fourier images of displacements with respect to lateral variables. The resulting problem is reduced to integral equations of the Volterra type. Finally, using Paley Wiener theorem it is shown that the solution of the initial value problem can be found by the inverse Fourier transform. A numerical example is considered for the comparison of the exact solution with the computed solution obtained by using the method.

How to cite

top

Altunkaynak, Meltem. "Solving elastodynamic problems of 2D quasicrystals in inhomogeneous media." Applications of Mathematics 69.3 (2024): 289-309. <http://eudml.org/doc/299410>.

@article{Altunkaynak2024,
abstract = {Initial value problem for three dimensional (3D) elastodynamic system in two dimensional (2D) inhomogeneous quasicrystals is considered. An analytical method is studied for the solution of this problem. The system is written in terms of Fourier images of displacements with respect to lateral variables. The resulting problem is reduced to integral equations of the Volterra type. Finally, using Paley Wiener theorem it is shown that the solution of the initial value problem can be found by the inverse Fourier transform. A numerical example is considered for the comparison of the exact solution with the computed solution obtained by using the method.},
author = {Altunkaynak, Meltem},
journal = {Applications of Mathematics},
keywords = {2D quasicrystals; inhomogeneous media; elastodynamic system},
language = {eng},
number = {3},
pages = {289-309},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Solving elastodynamic problems of 2D quasicrystals in inhomogeneous media},
url = {http://eudml.org/doc/299410},
volume = {69},
year = {2024},
}

TY - JOUR
AU - Altunkaynak, Meltem
TI - Solving elastodynamic problems of 2D quasicrystals in inhomogeneous media
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 3
SP - 289
EP - 309
AB - Initial value problem for three dimensional (3D) elastodynamic system in two dimensional (2D) inhomogeneous quasicrystals is considered. An analytical method is studied for the solution of this problem. The system is written in terms of Fourier images of displacements with respect to lateral variables. The resulting problem is reduced to integral equations of the Volterra type. Finally, using Paley Wiener theorem it is shown that the solution of the initial value problem can be found by the inverse Fourier transform. A numerical example is considered for the comparison of the exact solution with the computed solution obtained by using the method.
LA - eng
KW - 2D quasicrystals; inhomogeneous media; elastodynamic system
UR - http://eudml.org/doc/299410
ER -

References

top
  1. Altunkaynak, M., 10.1002/mma.5510, Math. Methods Appl. Sci. 42 (2019), 2324-2333. (2019) Zbl1420.35154MR3936402DOI10.1002/mma.5510
  2. Andersen, N. B., 10.2140/pjm.2004.213.1, Pac. J. Math. 213 (2004), 1-13. (2004) Zbl1049.43004MR2040247DOI10.2140/pjm.2004.213.1
  3. Chen, J., Liu, Z., Zou, Z., 10.1016/S0020-7225(02)00038-1, Int. J. Eng. Sci. 40 (2002), 1761-1774. (2002) DOI10.1016/S0020-7225(02)00038-1
  4. Chen, W. Q., Ma, Y. L., Ding, H. J., 10.1016/j.mechrescom.2004.03.007, Mech. Res. Commun. 31 (2004), 633-641. (2004) Zbl1098.74554MR2092970DOI10.1016/j.mechrescom.2004.03.007
  5. Daros, C. H., 10.1016/j.ijengsci.2008.02.001, Int. J. Eng. Sci. 46 (2008), 809-817. (2008) Zbl1213.74156MR2427933DOI10.1016/j.ijengsci.2008.02.001
  6. Daros, C. H., 10.1016/j.wavemoti.2009.02.001, Wave Motion 46 (2009), 269-279. (2009) Zbl1231.74172MR2568578DOI10.1016/j.wavemoti.2009.02.001
  7. De, P., Pelcovits, R. A., 10.1103/PhysRevB.35.8609, Phys. Rev. B 35 (1987), Article ID 8609, 12 pages. (1987) DOI10.1103/PhysRevB.35.8609
  8. Ding, D.-H., Wang, R., Yang, W., Hu, C., 10.1088/0953-8984/7/28/003, J. Phys., Conden. Matt. 7 (1995), Article ID 5423, 14 pages. (1995) DOI10.1088/0953-8984/7/28/003
  9. Ding, D.-H., Yang, W., Hu, C., Wang, R., 10.1103/PhysRevB.48.7003, Phys. Rev. B 48 (1993), Article ID 7003, 8 pages. (1993) DOI10.1103/PhysRevB.48.7003
  10. Ding, H., Chenbuo, Liangjian, 10.1016/0020-7683(95)00152-2, Int. J. Solids Struct. 33 (1996), 2283-2298. (1996) Zbl0899.73453DOI10.1016/0020-7683(95)00152-2
  11. Fan, T., 10.1007/978-3-642-14643-5, Springer, Berlin (2011). (2011) Zbl1222.74003MR2847904DOI10.1007/978-3-642-14643-5
  12. Fan, T.-Y., Mai, Y.-W., 10.1115/1.1763591, Appl. Mech. Rev. 57 (2004), 325-343. (2004) DOI10.1115/1.1763591
  13. Gao, Y., 10.1016/j.physleta.2009.01.002, Phys. Lett., A 373 (2009), 885-889. (2009) Zbl1236.74048DOI10.1016/j.physleta.2009.01.002
  14. Gao, Y., Xu, S.-P., Zhao, B.-S., 10.1088/0031-8949/77/01/015601, Phys. Scr. 77 (2008), Article ID 015601, 6 pages. (2008) Zbl1157.82395DOI10.1088/0031-8949/77/01/015601
  15. Gao, Y., Zhao, B.-S., 10.1002/pssb.200541400, Phys. Status Solid., B 243 (2006), 4007-4019. (2006) DOI10.1002/pssb.200541400
  16. Gao, Y., Zhao, B.-S., 10.1016/j.apm.2008.11.001, Appl. Math. Modelling 33 (2009), 3382-3391. (2009) Zbl1205.74023MR2524125DOI10.1016/j.apm.2008.11.001
  17. Holford, R. L., 10.1121/1.387099, J. Acoust. Soc. Am. 70 (1981), 1427-1436. (1981) Zbl0478.35030MR0634323DOI10.1121/1.387099
  18. Hook, J. F., 10.1115/1.3640544, J. Appl. Mech. 29 (1962), 293-298. (1962) Zbl0107.41902MR0138265DOI10.1115/1.3640544
  19. Hu, C., Wang, R., Ding, D.-H., 10.1088/0034-4885/63/1/201, Rep. Progr. Phys. 63 (2000), Article ID 63, 39 pages. (2000) MR1732137DOI10.1088/0034-4885/63/1/201
  20. Levine, D., Steinhardt, P. J., 10.1103/PhysRevLett.53.2477, Phys. Rev. Lett. 53 (1984), Article ID 2477, 4 pages. (1984) MR0831879DOI10.1103/PhysRevLett.53.2477
  21. Li, L.-H., Fan, T.-Y., 10.1088/0256-307X/23/9/047, Chin. Phys. Lett. 23 (2006), Article ID 2519, 3 pages. (2006) DOI10.1088/0256-307X/23/9/047
  22. Liu, G. T., Fan, T. Y., Guo, R. P., 10.1016/j.ijsolstr.2004.02.028, Int. J. Solids Struct. 41 (2004), 3949-3959. (2004) Zbl1079.74524MR2215812DOI10.1016/j.ijsolstr.2004.02.028
  23. Manolis, G. D., Shaw, R. P., 10.1016/S0955-7997(00)00056-4, Eng. Anal. Bound. Elem. 24 (2000), 739-750. (2000) Zbl0971.74046DOI10.1016/S0955-7997(00)00056-4
  24. Ovid'ko, I. A., 10.1016/0921-5093(92)90359-9, Mater. Sci. Eng., A 154 (1992), 29-33. (1992) DOI10.1016/0921-5093(92)90359-9
  25. Peng, Y.-Z., Fan, T.-Y, 10.1016/S0921-4526(01)00611-1, Physica B 311 (2002), 326-330. (2002) DOI10.1016/S0921-4526(01)00611-1
  26. Rangelov, T. V., Manolis, G. D., Dineva, P. S., 10.1016/j.euromechsol.2005.05.002, Eur. J. Mech., A, Solids 24 (2005), 820-836 9999DOI99999 10.1016/j.euromechsol.2005.05.002 . (2005) Zbl1125.74344MR2174322DOI10.1016/j.euromechsol.2005.05.002
  27. Rochal, S. B., Lebedyuk, I. V., Kozinkina, Y. A., 10.1103/PhysRevB.60.865, Phys. Rev., B 60 (1999), Article ID 865, 9 pages. (1999) DOI10.1103/PhysRevB.60.865
  28. Shechtman, D., Blech, I., Gratias, D., Cahn, J. W., 10.1103/PhysRevLett.53.1951, Phys. Rev. Lett. 53 (1984), Article ID 1951, 3 pages. (1984) DOI10.1103/PhysRevLett.53.1951
  29. Slawinski, M. A., 10.1142/11994, World Scientific, Hackensack (2021). (2021) Zbl1459.74002DOI10.1142/11994
  30. Socolar, J. E. S., Lubensky, T. C., Steinhardt, P. J., 10.1103/PhysRevB.34.3345, Phys. Rev., B 34 (1986), Article ID 3345, 16 pages. (1986) DOI10.1103/PhysRevB.34.3345
  31. Wang, X., 10.1016/j.mechrescom.2005.02.022, Mech. Res. Commun. 33 (2006), 576-580. (2006) Zbl1192.74069MR2215812DOI10.1016/j.mechrescom.2005.02.022
  32. Watanabe, K., 10.1299/jsme1958.25.315, Bull. JSME 25 (1982), 315-320. (1982) DOI10.1299/jsme1958.25.315
  33. Watanabe, K., Payton, R. G., 10.1016/j.ijengsci.2004.08.001, Int. J. Eng. Sci. 42 (2004), 2087-2106. (2004) Zbl1211.74123MR2102742DOI10.1016/j.ijengsci.2004.08.001
  34. Yakhno, V., 10.1002/mma.7373, Math. Methods Appl. Sci. 44 (2021), 9487-9506. (2021) Zbl1475.35338MR4279862DOI10.1002/mma.7373
  35. Yakhno, V. G., Sevimlican, A., 10.1016/j.amc.2009.11.027, Appl. Math. Comput. 215 (2010), 3839-3850. (2010) Zbl1188.78003MR2578849DOI10.1016/j.amc.2009.11.027
  36. Yakhno, V., Sevimlican, A., 10.1007/s10492-011-0019-y, Appl. Math., Praha 56 (2011), 315-339. (2011) Zbl1224.35392MR2800581DOI10.1007/s10492-011-0019-y
  37. Yakhno, V. G., Yaslan, H. Ç, 10.1016/j.apm.2010.12.019, Appl. Math. Modelling 35 (2011), 3092-3110. (2011) Zbl1219.74010MR2776264DOI10.1016/j.apm.2010.12.019
  38. Yang, L. Z., Zhang, L. L., Gao, Y., 10.4028/www.scientific.net/AMM.275-277.101, Appl. Mech. Mater. 275-277 (2013), 101-104. (2013) DOI10.4028/www.scientific.net/AMM.275-277.101
  39. Zhang, L., Zhang, Y., Gao, Y., 10.1016/j.physleta.2014.07.027, Phys. Lett., A 378 (2014), 2768-2776. (2014) Zbl1298.74027MR3250390DOI10.1016/j.physleta.2014.07.027
  40. Zhou, W.-M., Fan, T.-Y., 10.1088/1009-1963/9/4/009, Chin. Phys. 9 (2000), Article ID 294, 10 pages. (2000) DOI10.1088/1009-1963/9/4/009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.