Coprimality of integers in Piatetski-Shapiro sequences

Watcharapon Pimsert; Teerapat Srichan; Pinthira Tangsupphathawat

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 1, page 197-212
  • ISSN: 0011-4642

Abstract

top
We use the estimation of the number of integers n such that n c belongs to an arithmetic progression to study the coprimality of integers in c = { n c } n , c > 1 , c .

How to cite

top

Pimsert, Watcharapon, Srichan, Teerapat, and Tangsupphathawat, Pinthira. "Coprimality of integers in Piatetski-Shapiro sequences." Czechoslovak Mathematical Journal 73.1 (2023): 197-212. <http://eudml.org/doc/299413>.

@article{Pimsert2023,
abstract = {We use the estimation of the number of integers $n$ such that $\lfloor n^c \rfloor $ belongs to an arithmetic progression to study the coprimality of integers in $\mathbb \{N\}^c=\lbrace \lfloor n^c \rfloor \rbrace _\{n\in \mathbb \{N\}\}$, $c>1$, $c\notin \mathbb \{N\}$.},
author = {Pimsert, Watcharapon, Srichan, Teerapat, Tangsupphathawat, Pinthira},
journal = {Czechoslovak Mathematical Journal},
keywords = {greatest common divisor; natural density; Piatetski-Shapiro sequence},
language = {eng},
number = {1},
pages = {197-212},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Coprimality of integers in Piatetski-Shapiro sequences},
url = {http://eudml.org/doc/299413},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Pimsert, Watcharapon
AU - Srichan, Teerapat
AU - Tangsupphathawat, Pinthira
TI - Coprimality of integers in Piatetski-Shapiro sequences
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 1
SP - 197
EP - 212
AB - We use the estimation of the number of integers $n$ such that $\lfloor n^c \rfloor $ belongs to an arithmetic progression to study the coprimality of integers in $\mathbb {N}^c=\lbrace \lfloor n^c \rfloor \rbrace _{n\in \mathbb {N}}$, $c>1$, $c\notin \mathbb {N}$.
LA - eng
KW - greatest common divisor; natural density; Piatetski-Shapiro sequence
UR - http://eudml.org/doc/299413
ER -

References

top
  1. Bergelson, V., Richter, F. K., 10.1007/978-3-319-55357-3_5, Number Theory: Diophantine Problems, Uniform Distribution and Applications Springer, Cham (2017), 109-135. (2017) Zbl1414.11083MR3676397DOI10.1007/978-3-319-55357-3_5
  2. Cesàro, E., 10.1007/BF02420800, Ann. Mat. (2) 13 (1885), 235-250 French 9999JFM99999 17.0144.05. (1885) DOI10.1007/BF02420800
  3. Cesàro, E., 10.1007/BF02420803, Ann. Mat. (2) 13 (1885), 291-294 French 9999JFM99999 17.0145.01. (1885) DOI10.1007/BF02420803
  4. Cohen, E., 10.1090/S0002-9939-1960-0111713-8, Proc. Am. Math. Soc. 11 (1960), 164-171. (1960) Zbl0096.02906MR0111713DOI10.1090/S0002-9939-1960-0111713-8
  5. Delmer, F., Deshouillers, J.-M., 10.1023/A:1022337727769, Period. Math. Hung. 45 (2002), 15-20. (2002) Zbl1026.11003MR1955189DOI10.1023/A:1022337727769
  6. Deshouillers, J.-M., A remark on cube-free numbers in Segal-Piatetski-Shapiro sequences, Hardy-Ramanujan J. 41 (2018), 127-132. (2018) Zbl1448.11055MR3935505
  7. Diaconis, P., Erdős, P., 10.1214/lnms/1196285379, A Festschrift for Herman Rubin Institute of Mathematical Statistics Lecture Notes - Monograph Series 45. Institute of Mathematical Statistics, Beachwood (2004), 56-61. (2004) Zbl1268.11139MR2126886DOI10.1214/lnms/1196285379
  8. Dirichlet, G. L., 10.1017/CBO9781139237345.007, Abh. König. Preuss. Akad. Wiss. (1849), 69-83 German. (1849) DOI10.1017/CBO9781139237345.007
  9. Fernández, J. L., Fernández, P., 10.1142/S1793042115500062, Int. J. Number Theory 11 (2015), 89-126. (2015) Zbl1322.11102MR3280945DOI10.1142/S1793042115500062
  10. Hardy, G. H., Wright, E. M., An Introduction to the Theory of Numbers, Oxford University Press, Oxford (2008). (2008) Zbl1159.11001MR2445243
  11. Lambek, J., Moser, L., 10.4153/CJM-1955-020-0, Can. J. Math. 7 (1955), 155-158. (1955) Zbl0064.27903MR0068563DOI10.4153/CJM-1955-020-0
  12. Piatetski-Shapiro, I. I., On the distribution of the prime numbers in sequences of the form [ f ( n ) ] , Mat. Sb., N. Ser. 33 (1953), 559-566. (1953) Zbl0053.02702MR0059302

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.