The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Coprimality of integers in Piatetski-Shapiro sequences”

On generalized square-full numbers in an arithmetic progression

Angkana Sripayap, Pattira Ruengsinsub, Teerapat Srichan (2022)

Czechoslovak Mathematical Journal

Similarity:

Let a and b . Denote by R a , b the set of all integers n > 1 whose canonical prime representation n = p 1 α 1 p 2 α 2 p r α r has all exponents α i ( 1 i r ) being a multiple of a or belonging to the arithmetic progression a t + b , t 0 : = { 0 } . All integers in R a , b are called generalized square-full integers. Using the exponent pair method, an upper bound for character sums over generalized square-full integers is derived. An application on the distribution of generalized square-full integers in an arithmetic progression is given. ...

Repdigits in generalized Pell sequences

Jhon J. Bravo, Jose L. Herrera (2020)

Archivum Mathematicum

Similarity:

For an integer k 2 , let ( n ) n be the k - generalized Pell sequence which starts with 0 , ... , 0 , 1 ( k terms) and each term afterwards is given by the linear recurrence n = 2 n - 1 + n - 2 + + n - k . In this paper, we find all k -generalized Pell numbers with only one distinct digit (the so-called repdigits). Some interesting estimations involving generalized Pell numbers, that we believe are of independent interest, are also deduced. This paper continues a previous work that searched for repdigits in the usual Pell sequence ( P n ( 2 ) ) n . ...

On the distribution of ( k , r ) -integers in Piatetski-Shapiro sequences

Teerapat Srichan (2021)

Czechoslovak Mathematical Journal

Similarity:

A natural number n is said to be a ( k , r ) -integer if n = a k b , where k > r > 1 and b is not divisible by the r th power of any prime. We study the distribution of such ( k , r ) -integers in the Piatetski-Shapiro sequence { n c } with c > 1 . As a corollary, we also obtain similar results for semi- r -free integers.

Maximal upper asymptotic density of sets of integers with missing differences from a given set

Ram Krishna Pandey (2015)

Mathematica Bohemica

Similarity:

Let M be a given nonempty set of positive integers and S any set of nonnegative integers. Let δ ¯ ( S ) denote the upper asymptotic density of S . We consider the problem of finding μ ( M ) : = sup S δ ¯ ( S ) , where the supremum is taken over all sets S satisfying that for each a , b S , a - b M . In this paper we discuss the values and bounds of μ ( M ) where M = { a , b , a + n b } for all even integers and for all sufficiently large odd integers n with a < b and gcd ( a , b ) = 1 .

A problem of Rankin on sets without geometric progressions

Melvyn B. Nathanson, Kevin O&#039;Bryant (2015)

Acta Arithmetica

Similarity:

A geometric progression of length k and integer ratio is a set of numbers of the form a , a r , . . . , a r k - 1 for some positive real number a and integer r ≥ 2. For each integer k ≥ 3, a greedy algorithm is used to construct a strictly decreasing sequence ( a i ) i = 1 of positive real numbers with a₁ = 1 such that the set G ( k ) = i = 1 ( a 2 i , a 2 i - 1 ] contains no geometric progression of length k and integer ratio. Moreover, G ( k ) is a maximal subset of (0,1] that contains no geometric progression of length k and integer ratio. It is also proved that...

Variations on a question concerning the degrees of divisors of x n - 1

Lola Thompson (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

In this paper, we examine a natural question concerning the divisors of the polynomial x n - 1 : “How often does x n - 1 have a divisor of every degree between 1 and n ?” In a previous paper, we considered the situation when x n - 1 is factored in [ x ] . In this paper, we replace [ x ] with 𝔽 p [ x ] , where p is an arbitrary-but-fixed prime. We also consider those n where this condition holds for all p .

Towards Bauer's theorem for linear recurrence sequences

Mariusz Skałba (2003)

Colloquium Mathematicae

Similarity:

Consider a recurrence sequence ( x k ) k of integers satisfying x k + n = a n - 1 x k + n - 1 + . . . + a x k + 1 + a x k , where a , a , . . . , a n - 1 are fixed and a₀ ∈ -1,1. Assume that x k > 0 for all sufficiently large k. If there exists k₀∈ ℤ such that x k < 0 then for each negative integer -D there exist infinitely many rational primes q such that q | x k for some k ∈ ℕ and (-D/q) = -1.

A density version of the Carlson–Simpson theorem

Pandelis Dodos, Vassilis Kanellopoulos, Konstantinos Tyros (2014)

Journal of the European Mathematical Society

Similarity:

We prove a density version of the Carlson–Simpson Theorem. Specifically we show the following. For every integer k 2 and every set A of words over k satisfying lim sup n | A [ k ] n | / k n > 0 there exist a word c over k and a sequence ( w n ) of left variable words over k such that the set c { c w 0 ( a 0 ) . . . w n ( a n ) : n and a 0 , . . . , a n [ k ] } is contained in A . While the result is infinite-dimensional its proof is based on an appropriate finite and quantitative version, also obtained in the paper.

On perfect powers in k -generalized Pell sequence

Zafer Şiar, Refik Keskin, Elif Segah Öztaş (2023)

Mathematica Bohemica

Similarity:

Let k 2 and let ( P n ( k ) ) n 2 - k be the k -generalized Pell sequence defined by P n ( k ) = 2 P n - 1 ( k ) + P n - 2 ( k ) + + P n - k ( k ) for n 2 with initial conditions P - ( k - 2 ) ( k ) = P - ( k - 3 ) ( k ) = = P - 1 ( k ) = P 0 ( k ) = 0 , P 1 ( k ) = 1 . In this study, we handle the equation P n ( k ) = y m in positive integers n , m , y , k such that k , y 2 , and give an upper bound on n . Also, we will show that the equation P n ( k ) = y m with 2 y 1000 has only one solution given by P 7 ( 2 ) = 13 2 .

The Golomb space is topologically rigid

Taras O. Banakh, Dario Spirito, Sławomir Turek (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The Golomb space τ is the set of positive integers endowed with the topology τ generated by the base consisting of arithmetic progressions { a + b n : n 0 } with coprime a , b . We prove that the Golomb space τ is topologically rigid in the sense that its homeomorphism group is trivial. This resolves a problem posed by T. Banakh at Mathoverflow in 2017.

On the least almost-prime in arithmetic progressions

Liuying Wu (2024)

Czechoslovak Mathematical Journal

Similarity:

Let 𝒫 2 denote a positive integer with at most 2 prime factors, counted according to multiplicity. For integers a , q such that ( a , q ) = 1 , let 𝒫 2 ( q , a ) denote the least 𝒫 2 in the arithmetic progression { n q + a } n = 1 . It is proved that for sufficiently large q , we have 𝒫 2 ( q , a ) q 1 . 825 . This result constitutes an improvement upon that of J. Li, M. Zhang and Y. Cai (2023), who obtained 𝒫 2 ( q , a ) q 1 . 8345 .

Cobham's theorem for substitutions

Fabien Durand (2011)

Journal of the European Mathematical Society

Similarity:

The seminal theorem of Cobham has given rise during the last 40 years to a lot of work about non-standard numeration systems and has been extended to many contexts. In this paper, as a result of fifteen years of improvements, we obtain a complete and general version for the so-called substitutive sequences. Let α and β be two multiplicatively independent Perron numbers. Then a sequence x A , where A is a finite alphabet, is both α -substitutive and β -substitutive if and only if x is ultimately...