Remarks on the balanced metric on Hartogs triangles with integral exponent
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 2, page 633-647
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZhang, Qiannan, and Yang, Huan. "Remarks on the balanced metric on Hartogs triangles with integral exponent." Czechoslovak Mathematical Journal 73.2 (2023): 633-647. <http://eudml.org/doc/299418>.
@article{Zhang2023,
abstract = {In this paper we study the balanced metrics on some Hartogs triangles of exponent $\gamma \in \mathbb \{Z\}^\{+\}$, i.e., \[ \Omega \_n(\gamma )= \lbrace z=(z\_1,\dots ,z\_n)\in \mathbb \{C\}^n\colon |z\_1|^\{1/\gamma \}<|z\_2|<\dots <|z\_n|<1 \rbrace \]
equipped with a natural Kähler form $\omega _\{g(\mu )\} := \frac\{1\}\{2\}(i /\pi )\partial \overline\{\partial \}\Phi _n$ with \[ \Phi \_n(z)=-\mu \_1\{\ln (|z\_2|^\{2\gamma \}- |z\_1 |^2)\}-\sum \_\{i=2\}^\{n-1\} \{\mu \_i\{\ln (|z\_\{i+1\}|^2-|z\_i|^2)\}\}-\mu \_n\{\ln (1-\{|z\_n|^2\})\}, \]
where $\mu =(\mu _1,\cdots ,\mu _n)$, $\mu _i>0$, depending on $n$ parameters. The purpose of this paper is threefold. First, we compute the explicit expression for the weighted Bergman kernel function for $(\Omega _n(\gamma ),g(\mu ))$ and we prove that $g(\mu )$ is balanced if and only if $\mu _1>1$ and $\gamma \mu _1$ is an integer, $\mu _i$ are integers such that $\mu _i\ge 2$ for all $i=2,\ldots ,n-1$, and $\mu _n>1$. Second, we prove that $g(\mu )$ is Kähler-Einstein if and only if $\mu _1=\mu _2=\cdots =\mu _n=2\lambda $, where $\lambda $ is a nonzero constant. Finally, we show that if $g(\mu )$ is balanced then $(\Omega _n(\gamma ),g(\mu ))$ admits a Berezin-Engliš quantization.},
author = {Zhang, Qiannan, Yang, Huan},
journal = {Czechoslovak Mathematical Journal},
keywords = {balanced metric; Kähler-Einstein metric; Berezin-Engliš quantization},
language = {eng},
number = {2},
pages = {633-647},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Remarks on the balanced metric on Hartogs triangles with integral exponent},
url = {http://eudml.org/doc/299418},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Zhang, Qiannan
AU - Yang, Huan
TI - Remarks on the balanced metric on Hartogs triangles with integral exponent
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 2
SP - 633
EP - 647
AB - In this paper we study the balanced metrics on some Hartogs triangles of exponent $\gamma \in \mathbb {Z}^{+}$, i.e., \[ \Omega _n(\gamma )= \lbrace z=(z_1,\dots ,z_n)\in \mathbb {C}^n\colon |z_1|^{1/\gamma }<|z_2|<\dots <|z_n|<1 \rbrace \]
equipped with a natural Kähler form $\omega _{g(\mu )} := \frac{1}{2}(i /\pi )\partial \overline{\partial }\Phi _n$ with \[ \Phi _n(z)=-\mu _1{\ln (|z_2|^{2\gamma }- |z_1 |^2)}-\sum _{i=2}^{n-1} {\mu _i{\ln (|z_{i+1}|^2-|z_i|^2)}}-\mu _n{\ln (1-{|z_n|^2})}, \]
where $\mu =(\mu _1,\cdots ,\mu _n)$, $\mu _i>0$, depending on $n$ parameters. The purpose of this paper is threefold. First, we compute the explicit expression for the weighted Bergman kernel function for $(\Omega _n(\gamma ),g(\mu ))$ and we prove that $g(\mu )$ is balanced if and only if $\mu _1>1$ and $\gamma \mu _1$ is an integer, $\mu _i$ are integers such that $\mu _i\ge 2$ for all $i=2,\ldots ,n-1$, and $\mu _n>1$. Second, we prove that $g(\mu )$ is Kähler-Einstein if and only if $\mu _1=\mu _2=\cdots =\mu _n=2\lambda $, where $\lambda $ is a nonzero constant. Finally, we show that if $g(\mu )$ is balanced then $(\Omega _n(\gamma ),g(\mu ))$ admits a Berezin-Engliš quantization.
LA - eng
KW - balanced metric; Kähler-Einstein metric; Berezin-Engliš quantization
UR - http://eudml.org/doc/299418
ER -
References
top- Arezzo, C., Loi, A., 10.1007/s00220-004-1053-3, Commun. Math. Phys. 246 (2004), 543-559. (2004) Zbl1062.32021MR2053943DOI10.1007/s00220-004-1053-3
- Bi, E., Feng, Z., Tu, Z., 10.1007/s10455-016-9495-3, Ann. Global Anal. Geom. 49 (2016), 349-359. (2016) Zbl1355.32004MR3510521DOI10.1007/s10455-016-9495-3
- Bi, E., Hou, Z., 10.5802/crmath.283, C. R., Math., Acad. Sci. Paris 360 (2022), 305-313. (2022) Zbl07514676MR4415724DOI10.5802/crmath.283
- Bi, E., Su, G., 10.1007/s10231-020-00995-2, Ann. Mat. Pura Appl. (4) 200 (2021), 273-285. (2021) Zbl1462.32008MR4208091DOI10.1007/s10231-020-00995-2
- Bommier-Hato, H., Engliš, M., Youssfi, E.-H., 10.1016/j.jmaa.2019.02.067, J. Math. Anal. Appl. 475 (2019), 736-754. (2019) Zbl1420.32019MR3944344DOI10.1016/j.jmaa.2019.02.067
- Catlin, D., 10.1007/978-1-4612-2166-1_1, Analysis and Geometry in Several Complex Variables Trends in Mathematics. Birkhäuser, Boston (1999), 1-23. (1999) Zbl0941.32002MR1699887DOI10.1007/978-1-4612-2166-1_1
- Cheng, S.-Y., Yau, S.-T., 10.1002/cpa.3160330404, Commun. Pure Appl. Math. 33 (1980), 507-544. (1980) Zbl0506.53031MR575736DOI10.1002/cpa.3160330404
- D'Angelo, J. P., 10.1007/BF02921591, J. Geom. Anal. 4 (1994), 23-34. (1994) Zbl0794.32021MR1274136DOI10.1007/BF02921591
- Donaldson, S. K., 0.4310/jdg/1090349449, J. Differ. Geom. 59 (2001), 479-522. (2001) Zbl1052.32017MR1916953DOI0.4310/jdg/1090349449
- Engliš, M., 10.1090/S0002-9947-96-01551-6, Trans. Am. Math. Soc. 348 (1996), 411-479. (1996) Zbl0842.46053MR1340173DOI10.1090/S0002-9947-96-01551-6
- Engliš, M., 10.1515/crll.2000.090, J. Reine Angew. Math. 528 (2000), 1-39. (2000) Zbl0965.32012MR1801656DOI10.1515/crll.2000.090
- Engliš, M., Weighted Bergman kernels and balanced metrics, RIMS Kokyuroku 1487 (2006), 40-54. (2006) MR2156503
- Feng, Z., Tu, Z., 10.1007/s10455-014-9447-8, Ann. Global Anal. Geom. 47 (2015), 305-333. (2015) Zbl1322.32003MR3331892DOI10.1007/s10455-014-9447-8
- Hou, Z., Bi, E., 10.1007/s00013-022-01718-0, Arch. Math. 118 (2022), 605-614. (2022) Zbl07530384MR4423454DOI10.1007/s00013-022-01718-0
- Loi, A., Zedda, M., 10.1007/s12188-011-0048-1, Abh. Math. Semin. Univ. Hamb. 81 (2011), 69-77. (2011) Zbl1228.53084MR2812034DOI10.1007/s12188-011-0048-1
- Loi, A., Zedda, M., 10.1007/s00209-011-0842-6, Math. Z. 270 (2012), 1077-1087. (2012) Zbl1239.53093MR2892939DOI10.1007/s00209-011-0842-6
- Ma, X., Marinescu, G., 10.1016/j.aim.2007.10.008, Adv. Math. 217 (2008), 1756-1815. (2008) Zbl1141.58018MR2382740DOI10.1016/j.aim.2007.10.008
- Ma, X., Marinescu, G., 10.1515/CRELLE.2011.133, J. Reine Angew. Math. 662 (2012), 1-56. (2012) Zbl1251.47030MR2876259DOI10.1515/CRELLE.2011.133
- Yang, H., Bi, E., 10.1007/s00013-018-1260-3, Arch. Math. 112 (2019), 417-427. (2019) Zbl1423.32001MR3928367DOI10.1007/s00013-018-1260-3
- Zedda, M., 10.1142/S0219887812500119, Int. J. Geom. Methods Mod. Phys. 9 (2012), Article ID 1250011, 13 pages. (2012) Zbl1260.53126MR2891525DOI10.1142/S0219887812500119
- Zedda, M., 10.1016/j.geomphys.2015.11.002, J. Geom. Phys. 100 (2016), 62-67. (2016) Zbl1330.53104MR3435762DOI10.1016/j.geomphys.2015.11.002
- Zelditch, S., 10.1155/S107379289800021X, Int. Math. Res. Not. 1998 (1998), 317-331. (1998) Zbl0922.58082MR1616718DOI10.1155/S107379289800021X
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.