Remarks on the balanced metric on Hartogs triangles with integral exponent

Qiannan Zhang; Huan Yang

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 2, page 633-647
  • ISSN: 0011-4642

Abstract

top
In this paper we study the balanced metrics on some Hartogs triangles of exponent γ + , i.e., Ω n ( γ ) = { z = ( z 1 , , z n ) n : | z 1 | 1 / γ < | z 2 | < < | z n | < 1 } equipped with a natural Kähler form ω g ( μ ) : = 1 2 ( i / π ) ¯ Φ n with Φ n ( z ) = - μ 1 ln ( | z 2 | 2 γ - | z 1 | 2 ) - i = 2 n - 1 μ i ln ( | z i + 1 | 2 - | z i | 2 ) - μ n ln ( 1 - | z n | 2 ) , where μ = ( μ 1 , , μ n ) , μ i > 0 , depending on n parameters. The purpose of this paper is threefold. First, we compute the explicit expression for the weighted Bergman kernel function for ( Ω n ( γ ) , g ( μ ) ) and we prove that g ( μ ) is balanced if and only if μ 1 > 1 and γ μ 1 is an integer, μ i are integers such that μ i 2 for all i = 2 , ... , n - 1 , and μ n > 1 . Second, we prove that g ( μ ) is Kähler-Einstein if and only if μ 1 = μ 2 = = μ n = 2 λ , where λ is a nonzero constant. Finally, we show that if g ( μ ) is balanced then ( Ω n ( γ ) , g ( μ ) ) admits a Berezin-Engliš quantization.

How to cite

top

Zhang, Qiannan, and Yang, Huan. "Remarks on the balanced metric on Hartogs triangles with integral exponent." Czechoslovak Mathematical Journal 73.2 (2023): 633-647. <http://eudml.org/doc/299418>.

@article{Zhang2023,
abstract = {In this paper we study the balanced metrics on some Hartogs triangles of exponent $\gamma \in \mathbb \{Z\}^\{+\}$, i.e., \[ \Omega \_n(\gamma )= \lbrace z=(z\_1,\dots ,z\_n)\in \mathbb \{C\}^n\colon |z\_1|^\{1/\gamma \}<|z\_2|<\dots <|z\_n|<1 \rbrace \] equipped with a natural Kähler form $\omega _\{g(\mu )\} := \frac\{1\}\{2\}(i /\pi )\partial \overline\{\partial \}\Phi _n$ with \[ \Phi \_n(z)=-\mu \_1\{\ln (|z\_2|^\{2\gamma \}- |z\_1 |^2)\}-\sum \_\{i=2\}^\{n-1\} \{\mu \_i\{\ln (|z\_\{i+1\}|^2-|z\_i|^2)\}\}-\mu \_n\{\ln (1-\{|z\_n|^2\})\}, \] where $\mu =(\mu _1,\cdots ,\mu _n)$, $\mu _i>0$, depending on $n$ parameters. The purpose of this paper is threefold. First, we compute the explicit expression for the weighted Bergman kernel function for $(\Omega _n(\gamma ),g(\mu ))$ and we prove that $g(\mu )$ is balanced if and only if $\mu _1>1$ and $\gamma \mu _1$ is an integer, $\mu _i$ are integers such that $\mu _i\ge 2$ for all $i=2,\ldots ,n-1$, and $\mu _n>1$. Second, we prove that $g(\mu )$ is Kähler-Einstein if and only if $\mu _1=\mu _2=\cdots =\mu _n=2\lambda $, where $\lambda $ is a nonzero constant. Finally, we show that if $g(\mu )$ is balanced then $(\Omega _n(\gamma ),g(\mu ))$ admits a Berezin-Engliš quantization.},
author = {Zhang, Qiannan, Yang, Huan},
journal = {Czechoslovak Mathematical Journal},
keywords = {balanced metric; Kähler-Einstein metric; Berezin-Engliš quantization},
language = {eng},
number = {2},
pages = {633-647},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Remarks on the balanced metric on Hartogs triangles with integral exponent},
url = {http://eudml.org/doc/299418},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Zhang, Qiannan
AU - Yang, Huan
TI - Remarks on the balanced metric on Hartogs triangles with integral exponent
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 2
SP - 633
EP - 647
AB - In this paper we study the balanced metrics on some Hartogs triangles of exponent $\gamma \in \mathbb {Z}^{+}$, i.e., \[ \Omega _n(\gamma )= \lbrace z=(z_1,\dots ,z_n)\in \mathbb {C}^n\colon |z_1|^{1/\gamma }<|z_2|<\dots <|z_n|<1 \rbrace \] equipped with a natural Kähler form $\omega _{g(\mu )} := \frac{1}{2}(i /\pi )\partial \overline{\partial }\Phi _n$ with \[ \Phi _n(z)=-\mu _1{\ln (|z_2|^{2\gamma }- |z_1 |^2)}-\sum _{i=2}^{n-1} {\mu _i{\ln (|z_{i+1}|^2-|z_i|^2)}}-\mu _n{\ln (1-{|z_n|^2})}, \] where $\mu =(\mu _1,\cdots ,\mu _n)$, $\mu _i>0$, depending on $n$ parameters. The purpose of this paper is threefold. First, we compute the explicit expression for the weighted Bergman kernel function for $(\Omega _n(\gamma ),g(\mu ))$ and we prove that $g(\mu )$ is balanced if and only if $\mu _1>1$ and $\gamma \mu _1$ is an integer, $\mu _i$ are integers such that $\mu _i\ge 2$ for all $i=2,\ldots ,n-1$, and $\mu _n>1$. Second, we prove that $g(\mu )$ is Kähler-Einstein if and only if $\mu _1=\mu _2=\cdots =\mu _n=2\lambda $, where $\lambda $ is a nonzero constant. Finally, we show that if $g(\mu )$ is balanced then $(\Omega _n(\gamma ),g(\mu ))$ admits a Berezin-Engliš quantization.
LA - eng
KW - balanced metric; Kähler-Einstein metric; Berezin-Engliš quantization
UR - http://eudml.org/doc/299418
ER -

References

top
  1. Arezzo, C., Loi, A., 10.1007/s00220-004-1053-3, Commun. Math. Phys. 246 (2004), 543-559. (2004) Zbl1062.32021MR2053943DOI10.1007/s00220-004-1053-3
  2. Bi, E., Feng, Z., Tu, Z., 10.1007/s10455-016-9495-3, Ann. Global Anal. Geom. 49 (2016), 349-359. (2016) Zbl1355.32004MR3510521DOI10.1007/s10455-016-9495-3
  3. Bi, E., Hou, Z., 10.5802/crmath.283, C. R., Math., Acad. Sci. Paris 360 (2022), 305-313. (2022) Zbl07514676MR4415724DOI10.5802/crmath.283
  4. Bi, E., Su, G., 10.1007/s10231-020-00995-2, Ann. Mat. Pura Appl. (4) 200 (2021), 273-285. (2021) Zbl1462.32008MR4208091DOI10.1007/s10231-020-00995-2
  5. Bommier-Hato, H., Engliš, M., Youssfi, E.-H., 10.1016/j.jmaa.2019.02.067, J. Math. Anal. Appl. 475 (2019), 736-754. (2019) Zbl1420.32019MR3944344DOI10.1016/j.jmaa.2019.02.067
  6. Catlin, D., 10.1007/978-1-4612-2166-1_1, Analysis and Geometry in Several Complex Variables Trends in Mathematics. Birkhäuser, Boston (1999), 1-23. (1999) Zbl0941.32002MR1699887DOI10.1007/978-1-4612-2166-1_1
  7. Cheng, S.-Y., Yau, S.-T., 10.1002/cpa.3160330404, Commun. Pure Appl. Math. 33 (1980), 507-544. (1980) Zbl0506.53031MR575736DOI10.1002/cpa.3160330404
  8. D'Angelo, J. P., 10.1007/BF02921591, J. Geom. Anal. 4 (1994), 23-34. (1994) Zbl0794.32021MR1274136DOI10.1007/BF02921591
  9. Donaldson, S. K., 0.4310/jdg/1090349449, J. Differ. Geom. 59 (2001), 479-522. (2001) Zbl1052.32017MR1916953DOI0.4310/jdg/1090349449
  10. Engliš, M., 10.1090/S0002-9947-96-01551-6, Trans. Am. Math. Soc. 348 (1996), 411-479. (1996) Zbl0842.46053MR1340173DOI10.1090/S0002-9947-96-01551-6
  11. Engliš, M., 10.1515/crll.2000.090, J. Reine Angew. Math. 528 (2000), 1-39. (2000) Zbl0965.32012MR1801656DOI10.1515/crll.2000.090
  12. Engliš, M., Weighted Bergman kernels and balanced metrics, RIMS Kokyuroku 1487 (2006), 40-54. (2006) MR2156503
  13. Feng, Z., Tu, Z., 10.1007/s10455-014-9447-8, Ann. Global Anal. Geom. 47 (2015), 305-333. (2015) Zbl1322.32003MR3331892DOI10.1007/s10455-014-9447-8
  14. Hou, Z., Bi, E., 10.1007/s00013-022-01718-0, Arch. Math. 118 (2022), 605-614. (2022) Zbl07530384MR4423454DOI10.1007/s00013-022-01718-0
  15. Loi, A., Zedda, M., 10.1007/s12188-011-0048-1, Abh. Math. Semin. Univ. Hamb. 81 (2011), 69-77. (2011) Zbl1228.53084MR2812034DOI10.1007/s12188-011-0048-1
  16. Loi, A., Zedda, M., 10.1007/s00209-011-0842-6, Math. Z. 270 (2012), 1077-1087. (2012) Zbl1239.53093MR2892939DOI10.1007/s00209-011-0842-6
  17. Ma, X., Marinescu, G., 10.1016/j.aim.2007.10.008, Adv. Math. 217 (2008), 1756-1815. (2008) Zbl1141.58018MR2382740DOI10.1016/j.aim.2007.10.008
  18. Ma, X., Marinescu, G., 10.1515/CRELLE.2011.133, J. Reine Angew. Math. 662 (2012), 1-56. (2012) Zbl1251.47030MR2876259DOI10.1515/CRELLE.2011.133
  19. Yang, H., Bi, E., 10.1007/s00013-018-1260-3, Arch. Math. 112 (2019), 417-427. (2019) Zbl1423.32001MR3928367DOI10.1007/s00013-018-1260-3
  20. Zedda, M., 10.1142/S0219887812500119, Int. J. Geom. Methods Mod. Phys. 9 (2012), Article ID 1250011, 13 pages. (2012) Zbl1260.53126MR2891525DOI10.1142/S0219887812500119
  21. Zedda, M., 10.1016/j.geomphys.2015.11.002, J. Geom. Phys. 100 (2016), 62-67. (2016) Zbl1330.53104MR3435762DOI10.1016/j.geomphys.2015.11.002
  22. Zelditch, S., 10.1155/S107379289800021X, Int. Math. Res. Not. 1998 (1998), 317-331. (1998) Zbl0922.58082MR1616718DOI10.1155/S107379289800021X

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.