Generalized absolute convergence of single and double Vilenkin-Fourier series and related results
Nayna Govindbhai Kalsariya; Bhikha Lila Ghodadra
Mathematica Bohemica (2024)
- Volume: 149, Issue: 2, page 129-166
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topKalsariya, Nayna Govindbhai, and Ghodadra, Bhikha Lila. "Generalized absolute convergence of single and double Vilenkin-Fourier series and related results." Mathematica Bohemica 149.2 (2024): 129-166. <http://eudml.org/doc/299419>.
@article{Kalsariya2024,
abstract = {We consider the Vilenkin orthonormal system on a Vilenkin group $G$ and the Vilenkin-Fourier coefficients $\hat\{f\}(n)$, $n\in \mathbb \{N\}$, of functions $f\in L^p(G)$ for some $1<p\le 2$. We obtain certain sufficient conditions for the finiteness of the series $\sum _\{n=1\}^\{\infty \}a_n|\hat\{f\}(n)|^r$, where $\lbrace a_n\rbrace $ is a given sequence of positive real numbers satisfying a mild assumption and $0<r<2$. We also find analogous conditions for the double Vilenkin-Fourier series. These sufficient conditions are in terms of (either global or local) moduli of continuity of $f$ and give multiplicative analogue of some results due to Móricz (2010), Móricz and Veres (2011), Golubov and Volosivets (2012), and Volosivets and Kuznetsova (2020).},
author = {Kalsariya, Nayna Govindbhai, Ghodadra, Bhikha Lila},
journal = {Mathematica Bohemica},
keywords = {generalized absolute convergence; Vilenkin-Fourier series; modulus of continuity; multiplicative system},
language = {eng},
number = {2},
pages = {129-166},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Generalized absolute convergence of single and double Vilenkin-Fourier series and related results},
url = {http://eudml.org/doc/299419},
volume = {149},
year = {2024},
}
TY - JOUR
AU - Kalsariya, Nayna Govindbhai
AU - Ghodadra, Bhikha Lila
TI - Generalized absolute convergence of single and double Vilenkin-Fourier series and related results
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 2
SP - 129
EP - 166
AB - We consider the Vilenkin orthonormal system on a Vilenkin group $G$ and the Vilenkin-Fourier coefficients $\hat{f}(n)$, $n\in \mathbb {N}$, of functions $f\in L^p(G)$ for some $1<p\le 2$. We obtain certain sufficient conditions for the finiteness of the series $\sum _{n=1}^{\infty }a_n|\hat{f}(n)|^r$, where $\lbrace a_n\rbrace $ is a given sequence of positive real numbers satisfying a mild assumption and $0<r<2$. We also find analogous conditions for the double Vilenkin-Fourier series. These sufficient conditions are in terms of (either global or local) moduli of continuity of $f$ and give multiplicative analogue of some results due to Móricz (2010), Móricz and Veres (2011), Golubov and Volosivets (2012), and Volosivets and Kuznetsova (2020).
LA - eng
KW - generalized absolute convergence; Vilenkin-Fourier series; modulus of continuity; multiplicative system
UR - http://eudml.org/doc/299419
ER -
References
top- Fine, N. J., 10.1090/S0002-9947-1949-0032833-2, Trans. Am. Math. Soc. 65 (1949), 372-414. (1949) Zbl0036.03604MR0032833DOI10.1090/S0002-9947-1949-0032833-2
- Folland, G. B., 10.1201/b19172, Textbooks in Mathematics. CRC Press, Boca Raton (2016). (2016) Zbl1342.43001MR3444405DOI10.1201/b19172
- Ghodadra, B. L., 10.5937/KgJMath1601091G, Kragujevac J. Math. 40 (2016), 91-104. (2016) Zbl1474.42108MR3509605DOI10.5937/KgJMath1601091G
- Gogoladze, L., Meskhia, R., On the absolute convergence of trigonometric Fourier series, Proc. A. Razmadze Math. Inst. 141 (2006), 29-40. (2006) Zbl1113.42004MR2259020
- Golubov, B., Efimov, A., Skvortsov, V., 10.1007/978-94-011-3288-6, Mathematics and Its Applications. Soviet Series 64. Kluwer, Dordrecht (1991). (1991) Zbl0785.42010MR1155844DOI10.1007/978-94-011-3288-6
- Golubov, B. I., Volosivets, S. S., 10.1007/s10476-012-0202-8, Anal. Math. 38 (2012), 105-122. (2012) Zbl1265.42005MR2925159DOI10.1007/s10476-012-0202-8
- Hewitt, E., Ross, K. A., 10.1007/978-1-4419-8638-2, Die Grundlehren der mathematischen Wissenschaften 115. Springer, Berlin (1963). (1963) Zbl0115.10603MR0156915DOI10.1007/978-1-4419-8638-2
- Izumi, M., Izumi, S., 10.1007/BF02591034, Ark. Mat. 7 (1967), 177-184. (1967) Zbl0189.07102MR0221195DOI10.1007/BF02591034
- Móricz, F., 10.1007/s10476-010-0402-z, Anal. Math. 36 (2010), 275-286. (2010) Zbl1240.42131MR2738321DOI10.1007/s10476-010-0402-z
- Móricz, F., Veres, A., 10.1007/s10474-010-0065-z, Acta Math. Hung. 131 (2011), 122-137. (2011) Zbl1240.42132MR2776656DOI10.1007/s10474-010-0065-z
- Onneweer, C. W., 10.1215/S0012-7094-72-03965-8, Duke Math. J. 39 (1972), 599-609. (1972) Zbl0252.43016MR0316976DOI10.1215/S0012-7094-72-03965-8
- Quek, T. S., Yap, L. Y. H., 10.1016/0022-247X(80)90110-9, J. Math. Anal. Appl. 74 (1980), 1-14. (1980) Zbl0434.43008MR0568369DOI10.1016/0022-247X(80)90110-9
- Volosivets, S. S., Kuznetsova, M. A., 10.1134/S0001434620010216, Math. Notes 107 (2020), 217-230. (2020) Zbl1442.42016MR4070005DOI10.1134/S0001434620010216
- Walker, P. L., 10.1017/S0305004100041906, Proc. Camb. Philos. Soc. 63 (1967), 923-928. (1967) Zbl0184.36301MR0216246DOI10.1017/S0305004100041906
- Younis, M. S., 10.1016/0022-247X(92)90273-G, J. Math. Anal. Appl. 163 (1992), 15-19. (1992) Zbl0752.43007MR1144701DOI10.1016/0022-247X(92)90273-G
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.