Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems

Shao-Yuan Huang; Ping-Han Hsieh

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 4, page 1081-1098
  • ISSN: 0011-4642

Abstract

top
We study the exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems - [ φ ( u ' ) ] ' = λ u p 1 - u N in ( - L , L ) , u ( - L ) = u ( L ) = 0 , where p > 1 , N > 0 , λ > 0 is a bifurcation parameter, L > 0 is an evolution parameter, and φ ( u ) is either φ ( u ) = u or φ ( u ) = u / 1 - u 2 . We prove that the corresponding bifurcation curve is -shape. Thus, the exact multiplicity of positive solutions can be obtained.

How to cite

top

Huang, Shao-Yuan, and Hsieh, Ping-Han. "Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems." Czechoslovak Mathematical Journal 73.4 (2023): 1081-1098. <http://eudml.org/doc/299426>.

@article{Huang2023,
abstract = {We study the exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems\[ \{\left\lbrace \begin\{array\}\{ll\} -[\phi (u^\{\prime \})]^\{\prime \}=\lambda u^\{p\} \Bigl (1-\dfrac\{u\}\{N\} \Bigr ) & \text\{in\} \ ( -L,L) , \\ u(-L)=u(L)=0,\end\{array\}\right.\} \] where $p>1$, $N>0$, $\lambda >0$ is a bifurcation parameter, $L>0$ is an evolution parameter, and $\phi (u)$ is either $\phi (u)=u$ or $\phi (u)=u/\sqrt\{1-u^\{2\}\}$. We prove that the corresponding bifurcation curve is $\subset $-shape. Thus, the exact multiplicity of positive solutions can be obtained.},
author = {Huang, Shao-Yuan, Hsieh, Ping-Han},
journal = {Czechoslovak Mathematical Journal},
keywords = {positive solution; bifurcation curve; Minkowski-curvature problem; logistic problem},
language = {eng},
number = {4},
pages = {1081-1098},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems},
url = {http://eudml.org/doc/299426},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Huang, Shao-Yuan
AU - Hsieh, Ping-Han
TI - Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 4
SP - 1081
EP - 1098
AB - We study the exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems\[ {\left\lbrace \begin{array}{ll} -[\phi (u^{\prime })]^{\prime }=\lambda u^{p} \Bigl (1-\dfrac{u}{N} \Bigr ) & \text{in} \ ( -L,L) , \\ u(-L)=u(L)=0,\end{array}\right.} \] where $p>1$, $N>0$, $\lambda >0$ is a bifurcation parameter, $L>0$ is an evolution parameter, and $\phi (u)$ is either $\phi (u)=u$ or $\phi (u)=u/\sqrt{1-u^{2}}$. We prove that the corresponding bifurcation curve is $\subset $-shape. Thus, the exact multiplicity of positive solutions can be obtained.
LA - eng
KW - positive solution; bifurcation curve; Minkowski-curvature problem; logistic problem
UR - http://eudml.org/doc/299426
ER -

References

top
  1. Bartnik, R., Simon, L., 10.1007/BF01211061, Commun. Math. Phys. 87 (1982), 131-152. (1982) Zbl0512.53055MR0680653DOI10.1007/BF01211061
  2. Chafee, N., Infante, E. F., 10.1080/00036817408839081, Appl. Anal. 4 (1974), 17-37. (1974) Zbl0296.35046MR0440205DOI10.1080/00036817408839081
  3. Coelho, I., Corsato, C., Obersnel, F., Omari, P., 10.1515/ans-2012-0310, Adv. Nonlinear Stud. 12 (2012), 621-638. (2012) Zbl1263.34028MR2976056DOI10.1515/ans-2012-0310
  4. Corsato, C., Mathematical Analysis of Some Differential Models Involving the Euclidean or the Minkowski Mean Curvature Operator: Ph.D. Thesis, University of Trieste, Trieste (2015), Available at http://hdl.handle.net/10077/11127. (2015) 
  5. Feynman, R. P., Leighton, R. B., Sands, M., The Feynman Lectures on Physics. II. Mainly Electromagnetism and Matter, Addison-Wesley, Reading (1964). (1964) Zbl0131.38703MR0213078
  6. Guedda, M., Véron, L., 10.1090/S0002-9947-1988-0965762-2, Trans. Am. Math. Soc. 310 (1988), 419-431. (1988) Zbl0713.34049MR0965762DOI10.1090/S0002-9947-1988-0965762-2
  7. Huang, S.-Y., 10.1016/j.jde.2018.01.021, J. Differ. Equations 264 (2018), 5977-6011. (2018) Zbl1390.34051MR3765772DOI10.1016/j.jde.2018.01.021
  8. Huang, S.-Y., 10.3934/cpaa.2018061, Commun. Pure Appl. Anal. 17 (2018), 1271-1294. (2018) Zbl1398.34034MR3809123DOI10.3934/cpaa.2018061
  9. Huang, S.-Y., 10.3934/dcds.2019142, Discrete Contin. Dyn. Syst. 39 (2019), 3443-3462. (2019) Zbl1419.34086MR3959436DOI10.3934/dcds.2019142
  10. Huang, S.-Y., 10.3934/cpaa.2019147, Commun. Pure Appl. Anal. 18 (2019), 3267-3284. (2019) Zbl1493.34056MR3985384DOI10.3934/cpaa.2019147
  11. Hung, K.-C., Huang, S.-Y., Wang, S.-H., 10.3934/dcds.2017222, Discrete Contin. Dyn. Syst. 37 (2017), 5127-5149. (2017) Zbl1378.34041MR3668355DOI10.3934/dcds.2017222
  12. Hung, K.-C., Wang, S.-H., 10.1090/S0002-9947-2012-05670-4, Trans. Am. Math. Soc. 365 (2013), 1933-1956. (2013) Zbl1282.34031MR3009649DOI10.1090/S0002-9947-2012-05670-4
  13. Laetsch, T., 10.1512/iumj.1970.20.20001, Indiana Univ. Math. J. 20 (1970), 1-13. (1970) Zbl0215.14602MR0269922DOI10.1512/iumj.1970.20.20001
  14. McCabe, P. M., Leach, J. A., Needham, D. J., 10.1137/S003613999631259, SIAM J. Appl. Math. 59 (1999), 870-899. (1999) Zbl0938.35075MR1661239DOI10.1137/S003613999631259
  15. Shi, J., Shivaji, R., 10.1007/s00285-006-0373-7, J. Math. Biol. 52 (2006), 807-829. (2006) Zbl1110.92055MR2235529DOI10.1007/s00285-006-0373-7
  16. Takeuchi, S., Yamada, Y., 10.1016/S0362-546X(98)00329-0, Nonlinear Anal., Theory Methods Appl., Ser. A 42 (2000), 41-61. (2000) Zbl0961.35075MR1769251DOI10.1016/S0362-546X(98)00329-0
  17. Verhulst, P. F., Notice sur la loi que la population poursuit dans son accroissement, Corresp. Math. Phys. 10 (1838), 113-121 French. (1838) 
  18. Wang, M.-H., Kot, M., 10.1016/S0025-5564(01)00048-7, Math. Biosci. 171 (2001), 83-97. (2001) Zbl0978.92033MR1839210DOI10.1016/S0025-5564(01)00048-7
  19. Xin, J., 10.1137/S0036144599364296, SIAM Rev. 42 (2000), 161-230. (2000) Zbl0951.35060MR1778352DOI10.1137/S0036144599364296

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.