Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems
Shao-Yuan Huang; Ping-Han Hsieh
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 4, page 1081-1098
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHuang, Shao-Yuan, and Hsieh, Ping-Han. "Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems." Czechoslovak Mathematical Journal 73.4 (2023): 1081-1098. <http://eudml.org/doc/299426>.
@article{Huang2023,
abstract = {We study the exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems\[ \{\left\lbrace \begin\{array\}\{ll\} -[\phi (u^\{\prime \})]^\{\prime \}=\lambda u^\{p\} \Bigl (1-\dfrac\{u\}\{N\} \Bigr ) & \text\{in\} \ ( -L,L) , \\ u(-L)=u(L)=0,\end\{array\}\right.\} \]
where $p>1$, $N>0$, $\lambda >0$ is a bifurcation parameter, $L>0$ is an evolution parameter, and $\phi (u)$ is either $\phi (u)=u$ or $\phi (u)=u/\sqrt\{1-u^\{2\}\}$. We prove that the corresponding bifurcation curve is $\subset $-shape. Thus, the exact multiplicity of positive solutions can be obtained.},
author = {Huang, Shao-Yuan, Hsieh, Ping-Han},
journal = {Czechoslovak Mathematical Journal},
keywords = {positive solution; bifurcation curve; Minkowski-curvature problem; logistic problem},
language = {eng},
number = {4},
pages = {1081-1098},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems},
url = {http://eudml.org/doc/299426},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Huang, Shao-Yuan
AU - Hsieh, Ping-Han
TI - Exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 4
SP - 1081
EP - 1098
AB - We study the exact multiplicity and bifurcation curves of positive solutions of generalized logistic problems\[ {\left\lbrace \begin{array}{ll} -[\phi (u^{\prime })]^{\prime }=\lambda u^{p} \Bigl (1-\dfrac{u}{N} \Bigr ) & \text{in} \ ( -L,L) , \\ u(-L)=u(L)=0,\end{array}\right.} \]
where $p>1$, $N>0$, $\lambda >0$ is a bifurcation parameter, $L>0$ is an evolution parameter, and $\phi (u)$ is either $\phi (u)=u$ or $\phi (u)=u/\sqrt{1-u^{2}}$. We prove that the corresponding bifurcation curve is $\subset $-shape. Thus, the exact multiplicity of positive solutions can be obtained.
LA - eng
KW - positive solution; bifurcation curve; Minkowski-curvature problem; logistic problem
UR - http://eudml.org/doc/299426
ER -
References
top- Bartnik, R., Simon, L., 10.1007/BF01211061, Commun. Math. Phys. 87 (1982), 131-152. (1982) Zbl0512.53055MR0680653DOI10.1007/BF01211061
- Chafee, N., Infante, E. F., 10.1080/00036817408839081, Appl. Anal. 4 (1974), 17-37. (1974) Zbl0296.35046MR0440205DOI10.1080/00036817408839081
- Coelho, I., Corsato, C., Obersnel, F., Omari, P., 10.1515/ans-2012-0310, Adv. Nonlinear Stud. 12 (2012), 621-638. (2012) Zbl1263.34028MR2976056DOI10.1515/ans-2012-0310
- Corsato, C., Mathematical Analysis of Some Differential Models Involving the Euclidean or the Minkowski Mean Curvature Operator: Ph.D. Thesis, University of Trieste, Trieste (2015), Available at http://hdl.handle.net/10077/11127. (2015)
- Feynman, R. P., Leighton, R. B., Sands, M., The Feynman Lectures on Physics. II. Mainly Electromagnetism and Matter, Addison-Wesley, Reading (1964). (1964) Zbl0131.38703MR0213078
- Guedda, M., Véron, L., 10.1090/S0002-9947-1988-0965762-2, Trans. Am. Math. Soc. 310 (1988), 419-431. (1988) Zbl0713.34049MR0965762DOI10.1090/S0002-9947-1988-0965762-2
- Huang, S.-Y., 10.1016/j.jde.2018.01.021, J. Differ. Equations 264 (2018), 5977-6011. (2018) Zbl1390.34051MR3765772DOI10.1016/j.jde.2018.01.021
- Huang, S.-Y., 10.3934/cpaa.2018061, Commun. Pure Appl. Anal. 17 (2018), 1271-1294. (2018) Zbl1398.34034MR3809123DOI10.3934/cpaa.2018061
- Huang, S.-Y., 10.3934/dcds.2019142, Discrete Contin. Dyn. Syst. 39 (2019), 3443-3462. (2019) Zbl1419.34086MR3959436DOI10.3934/dcds.2019142
- Huang, S.-Y., 10.3934/cpaa.2019147, Commun. Pure Appl. Anal. 18 (2019), 3267-3284. (2019) Zbl1493.34056MR3985384DOI10.3934/cpaa.2019147
- Hung, K.-C., Huang, S.-Y., Wang, S.-H., 10.3934/dcds.2017222, Discrete Contin. Dyn. Syst. 37 (2017), 5127-5149. (2017) Zbl1378.34041MR3668355DOI10.3934/dcds.2017222
- Hung, K.-C., Wang, S.-H., 10.1090/S0002-9947-2012-05670-4, Trans. Am. Math. Soc. 365 (2013), 1933-1956. (2013) Zbl1282.34031MR3009649DOI10.1090/S0002-9947-2012-05670-4
- Laetsch, T., 10.1512/iumj.1970.20.20001, Indiana Univ. Math. J. 20 (1970), 1-13. (1970) Zbl0215.14602MR0269922DOI10.1512/iumj.1970.20.20001
- McCabe, P. M., Leach, J. A., Needham, D. J., 10.1137/S003613999631259, SIAM J. Appl. Math. 59 (1999), 870-899. (1999) Zbl0938.35075MR1661239DOI10.1137/S003613999631259
- Shi, J., Shivaji, R., 10.1007/s00285-006-0373-7, J. Math. Biol. 52 (2006), 807-829. (2006) Zbl1110.92055MR2235529DOI10.1007/s00285-006-0373-7
- Takeuchi, S., Yamada, Y., 10.1016/S0362-546X(98)00329-0, Nonlinear Anal., Theory Methods Appl., Ser. A 42 (2000), 41-61. (2000) Zbl0961.35075MR1769251DOI10.1016/S0362-546X(98)00329-0
- Verhulst, P. F., Notice sur la loi que la population poursuit dans son accroissement, Corresp. Math. Phys. 10 (1838), 113-121 French. (1838)
- Wang, M.-H., Kot, M., 10.1016/S0025-5564(01)00048-7, Math. Biosci. 171 (2001), 83-97. (2001) Zbl0978.92033MR1839210DOI10.1016/S0025-5564(01)00048-7
- Xin, J., 10.1137/S0036144599364296, SIAM Rev. 42 (2000), 161-230. (2000) Zbl0951.35060MR1778352DOI10.1137/S0036144599364296
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.