Energy dissipation and hysteresis cycles in pre-sliding transients of kinetic friction
Applications of Mathematics (2023)
- Volume: 68, Issue: 6, page 845-860
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topRuderman, Michael. "Energy dissipation and hysteresis cycles in pre-sliding transients of kinetic friction." Applications of Mathematics 68.6 (2023): 845-860. <http://eudml.org/doc/299430>.
@article{Ruderman2023,
abstract = {The problem of transient hysteresis cycles induced by the pre-sliding kinetic friction is relevant for analyzing the system dynamics, e.g., of micro- and nano-positioning instruments and devices and their controlled operation. The associated energy dissipation and consequent convergence of the state trajectories occur due to the structural hysteresis damping of contact surface asperities during reversals, and it is neither exponential (i.e., viscous type) nor finite-time (i.e., Coulomb type). In this paper, we discuss the energy dissipation and convergence during the pre-sliding cycles and show how a piecewise smooth force-displacement hysteresis map enters into the energy balance of an unforced system of the second order. An existing friction modeling approach with a low number of the free parameters, the Dahl model, is then exemplified alongside the developed analysis.},
author = {Ruderman, Michael},
journal = {Applications of Mathematics},
keywords = {hysteresis; friction; energy dissipation; nonlinear convergence; stick-slip cycles},
language = {eng},
number = {6},
pages = {845-860},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Energy dissipation and hysteresis cycles in pre-sliding transients of kinetic friction},
url = {http://eudml.org/doc/299430},
volume = {68},
year = {2023},
}
TY - JOUR
AU - Ruderman, Michael
TI - Energy dissipation and hysteresis cycles in pre-sliding transients of kinetic friction
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 6
SP - 845
EP - 860
AB - The problem of transient hysteresis cycles induced by the pre-sliding kinetic friction is relevant for analyzing the system dynamics, e.g., of micro- and nano-positioning instruments and devices and their controlled operation. The associated energy dissipation and consequent convergence of the state trajectories occur due to the structural hysteresis damping of contact surface asperities during reversals, and it is neither exponential (i.e., viscous type) nor finite-time (i.e., Coulomb type). In this paper, we discuss the energy dissipation and convergence during the pre-sliding cycles and show how a piecewise smooth force-displacement hysteresis map enters into the energy balance of an unforced system of the second order. An existing friction modeling approach with a low number of the free parameters, the Dahl model, is then exemplified alongside the developed analysis.
LA - eng
KW - hysteresis; friction; energy dissipation; nonlinear convergence; stick-slip cycles
UR - http://eudml.org/doc/299430
ER -
References
top- Al-Bender, F., Symens, W., Swevers, J., Brussel, H. Van, 10.1016/j.ijnonlinmec.2004.04.005, Int. J. Non-Linear Mech. 39 (2004), 1721-1735. (2004) Zbl1349.74291DOI10.1016/j.ijnonlinmec.2004.04.005
- Armstrong-Hélouvry, B., Dupont, P., Wit, C. C. De, 10.1016/0005-1098(94)90209-7, Automatica 30 (1994), 1083-1138. (1994) Zbl0800.93424DOI10.1016/0005-1098(94)90209-7
- Bertotti, G., (Eds.), I. D. Mayergoyz, The Science of Hysteresis. Vol. I. Mathematical Modeling and Applications, Elsevier, Amsterdam (2006). (2006) Zbl1117.34045MR2307929
- Bertotti, G., (Eds.), I. D. Mayergoyz, The Science of Hysteresis. Vol. II. Physical Modeling, Micromagnetics, and Magnetization Dynamics, Elsevier, Amsterdam (2006). (2006) Zbl1117.34046MR2307930
- Bertotti, G., (Eds.), I. D. Mayergoyz, The Science of Hysteresis. Vol. III. Hysteresis in Materials, Elsevier, Amsterdam (2006). (2006) Zbl1117.34047MR2307931
- Bliman, P.-A. J., Mathematical study of the Dahl's friction model, Eur. J. Mech., A 11 (1992), 835-848. (1992) Zbl0766.73059MR1196551
- Brokate, M., Sprekels, J., 10.1007/978-1-4612-4048-8, Applied Mathematical Sciences 121. Springer, New York (1996). (1996) Zbl0951.74002MR1411908DOI10.1007/978-1-4612-4048-8
- Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, D. J., Knuth, D. E., 10.1007/BF02124750, Adv. Comput. Math. 5 (1996), 329-359. (1996) Zbl0863.65008MR1414285DOI10.1007/BF02124750
- Dahl, P. R., A Solid Friction Model, Aerospace Corporation, Los Angeles (1968), Available at https://apps.dtic.mil/sti/pdfs/ADA041920.pdf. (1968)
- Dahl, P. R., 10.2514/3.61511, AIAA Journal 14 (1976), 1675-1682. (1976) DOI10.2514/3.61511
- Greenwood, J. A., Minshall, H., Tabor, D., 10.1098/rspa.1961.0004, Proc. R. Soc. Lond., Ser. A 259 (1961), 480-507. (1961) DOI10.1098/rspa.1961.0004
- Koizumi, T., Shibazaki, H., 10.1016/0043-1648(84)90202-3, Wear 93 (1984), 281-290. (1984) DOI10.1016/0043-1648(84)90202-3
- Krejčí, P., Hysteresis, Convexity and Dissipation in Hyperbolic Equations, GAKUTO International Series. Mathematical Sciences and Applications 8. Gakkotosho, Tokyo (1996). (1996) Zbl1187.35003MR2466538
- Lacarbonara, W., Vestroni, F., 10.1023/A:1024423626386, Nonlinear Dyn. 32 (2003), 235-258 9999DOI99999 10.1023/A:1024423626386 . (2003) Zbl1062.70599DOI10.1023/A:1024423626386
- Lampaert, V., Al-Bender, F., Swevers, J., 10.1023/B:TRIL.0000009719.53083.9e, Tribology Lett. 16 (2004), 95-105. (2004) DOI10.1023/B:TRIL.0000009719.53083.9e
- Ruderman, M., 10.1016/j.mechatronics.2015.07.007, Mechatronics 30 (2015), 225-230. (2015) DOI10.1016/j.mechatronics.2015.07.007
- Ruderman, M., 10.1002/asjc.2718, Asian J. Control 24 (2022), 2877-2887. (2022) MR4525023DOI10.1002/asjc.2718
- Ruderman, M., Rachinskii, D., 10.1088/1742-6596/811/1/012013, J. Phys., Conf. Ser. 811 (2017), Article ID 012013, 10 pages. (2017) MR3785348DOI10.1088/1742-6596/811/1/012013
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.