A generalization of reflexive rings
Mete Burak Çalcı; Huanyin Chen; Sait Halıcıoğlu
Mathematica Bohemica (2024)
- Volume: 149, Issue: 2, page 225-235
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topÇalcı, Mete Burak, Chen, Huanyin, and Halıcıoğlu, Sait. "A generalization of reflexive rings." Mathematica Bohemica 149.2 (2024): 225-235. <http://eudml.org/doc/299431>.
@article{Çalcı2024,
abstract = {We introduce a class of rings which is a generalization of reflexive rings and $J$-reversible rings. Let $R$ be a ring with identity and $J(R)$ denote the Jacobson radical of $R$. A ring $R$ is called $J$-reflexive if for any $a, b \in R$, $aRb = 0$ implies $bRa \subseteq J(R)$. We give some characterizations of a $J$-reflexive ring. We prove that some results of reflexive rings can be extended to $J$-reflexive rings for this general setting. We conclude some relations between $J$-reflexive rings and some related rings. We investigate some extensions of a ring which satisfies the $J$-reflexive property and we show that the $J$-reflexive property is Morita invariant.},
author = {Çalcı, Mete Burak, Chen, Huanyin, Halıcıoğlu, Sait},
journal = {Mathematica Bohemica},
keywords = {reflexive ring; reversible ring; $J$-reflexive ring; $J$-reversible ring; ring extension},
language = {eng},
number = {2},
pages = {225-235},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A generalization of reflexive rings},
url = {http://eudml.org/doc/299431},
volume = {149},
year = {2024},
}
TY - JOUR
AU - Çalcı, Mete Burak
AU - Chen, Huanyin
AU - Halıcıoğlu, Sait
TI - A generalization of reflexive rings
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 2
SP - 225
EP - 235
AB - We introduce a class of rings which is a generalization of reflexive rings and $J$-reversible rings. Let $R$ be a ring with identity and $J(R)$ denote the Jacobson radical of $R$. A ring $R$ is called $J$-reflexive if for any $a, b \in R$, $aRb = 0$ implies $bRa \subseteq J(R)$. We give some characterizations of a $J$-reflexive ring. We prove that some results of reflexive rings can be extended to $J$-reflexive rings for this general setting. We conclude some relations between $J$-reflexive rings and some related rings. We investigate some extensions of a ring which satisfies the $J$-reflexive property and we show that the $J$-reflexive property is Morita invariant.
LA - eng
KW - reflexive ring; reversible ring; $J$-reflexive ring; $J$-reversible ring; ring extension
UR - http://eudml.org/doc/299431
ER -
References
top- Calci, M. B., Chen, H., Halicioglu, S., Harmanci, A., 10.1007/s00009-017-0938-2, Mediterr. J. Math. 14 (2017), Article ID 137, 14 pages. (2017) Zbl1377.16034MR3654896DOI10.1007/s00009-017-0938-2
- Cohn, P. M., 10.1112/S0024609399006116, Bull. Lond. Math. Soc. 31 (1999), 641-648. (1999) Zbl1021.16019MR1711020DOI10.1112/S0024609399006116
- Kaplansky, I., Rings of Operators, Mathematics Lecture Note Series. W. A. Benjamin, New York (1968). (1968) Zbl0174.18503MR0244778
- Kwak, T. K., Lee, Y., 10.1080/00927872.2011.554474, Commun. Algebra 40 (2012), 1576-1594. (2012) Zbl1252.16033MR2913004DOI10.1080/00927872.2011.554474
- Lam, T. Y., Dugas, A. S., 10.1016/j.jpaa.2004.08.011, J. Pure. Appl. Algebra 195 (2005), 243-259. (2005) Zbl1071.16003MR2114274DOI10.1016/j.jpaa.2004.08.011
- Mason, G., 10.1080/00927878108822678, Commun. Algebra 9 (1981), 1709-1724. (1981) Zbl0468.16024MR0631884DOI10.1080/00927878108822678
- Nicholson, W. K., Zhou, Y., 10.1017/S0017089504001727, Glasg. Math. J. 46 (2004), 227-236. (2004) Zbl1057.16007MR2062606DOI10.1017/S0017089504001727
- Yu, H.-P., 10.1017/S0017089500030342, Glasg. Math. J. 37 (1995), 21-31. (1995) Zbl0819.16001MR1316960DOI10.1017/S0017089500030342
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.