Degrees of compatible -subsets and compatible mappings
Kybernetika (2024)
- Issue: 2, page 172-196
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topShi, Fu Gui, and Sun, Yan. "Degrees of compatible $L$-subsets and compatible mappings." Kybernetika (2024): 172-196. <http://eudml.org/doc/299434>.
@article{Shi2024,
abstract = {Based on a completely distributive lattice $L$, degrees of compatible $L$-subsets and compatible mappings are introduced in an $L$-approximation space and their characterizations are given by four kinds of cut sets of $L$-subsets and $L$-equivalences, respectively. Besides, some characterizations of compatible mappings and compatible degrees of mappings are given by compatible $L$-subsets and compatible degrees of $L$-subsets. Finally, the notion of complete $L$-sublattices is introduced and it is shown that the product of complete $L$-sublattices is still a complete $L$-sublattice and the compatible degree of an $L$-subset is a complete $L$-sublattice.},
author = {Shi, Fu Gui, Sun, Yan},
journal = {Kybernetika},
keywords = {$L$-approximation spaces; compatible $L$-subsets; compatible mappings; complete $L$-sublattices},
language = {eng},
number = {2},
pages = {172-196},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Degrees of compatible $L$-subsets and compatible mappings},
url = {http://eudml.org/doc/299434},
year = {2024},
}
TY - JOUR
AU - Shi, Fu Gui
AU - Sun, Yan
TI - Degrees of compatible $L$-subsets and compatible mappings
JO - Kybernetika
PY - 2024
PB - Institute of Information Theory and Automation AS CR
IS - 2
SP - 172
EP - 196
AB - Based on a completely distributive lattice $L$, degrees of compatible $L$-subsets and compatible mappings are introduced in an $L$-approximation space and their characterizations are given by four kinds of cut sets of $L$-subsets and $L$-equivalences, respectively. Besides, some characterizations of compatible mappings and compatible degrees of mappings are given by compatible $L$-subsets and compatible degrees of $L$-subsets. Finally, the notion of complete $L$-sublattices is introduced and it is shown that the product of complete $L$-sublattices is still a complete $L$-sublattice and the compatible degree of an $L$-subset is a complete $L$-sublattice.
LA - eng
KW - $L$-approximation spaces; compatible $L$-subsets; compatible mappings; complete $L$-sublattices
UR - http://eudml.org/doc/299434
ER -
References
top- Ajmal, N., Thomas, K. V., , Inf. Sci. 79 (1994), 271-291. MR1282402DOI
- Bandler, W., Kohout, L. J., , Int. J. Man-Machine Studies 12 (1980), 89-116. MR0576477DOI
- Bělohlávek, R., Fuzzy Relational Systems. Foundations and Principles., Kluwer Academic Publishers, New York 2002.
- Bělohlávek, R., Dvořák, J., Outrata, J., , J. Comput. Syst. Sci. 73 (2007), 6, 1012-1022. MR2332731DOI
- Berry, V., Nicolas, F., , IEEE/ACM Trans. Comput. Biol. Bioinform. 3 (2006), 3, 289-302. DOI
- Birkhoff, G., Lattice Theory., AMS, 1948. Zbl0537.06001MR0029876
- Demirci, M., , Int. J. Gen. Syst. 32 (2003), 123-155. MR1967126DOI
- Dong, Y. Y., Shi, F.-G., , Mathematics 9 (2021), 14, 1596. DOI
- Fang, J. M., Residuated Lattices and Fuzzy Sets., Science Press (in Chinese), 2012.
- Ganapathy, G., Warnow, T. J., , Lecture Notes Comput. Sci. 2462 (2002), 122-134. MR2091821DOI
- Ganter, B., Wille, R., , Springer, 1999. MR1707295DOI
- Gao, Y., Pang, B., , Hacet. J. Math. Stat. 53 (2024), 1, 88-106. MR4714280DOI
- Gégény, D., Radeleczki, S., , Int. J. Approx. Reason. 142 (2022), 1-12. MR4343710DOI
- Goguen, J. A., , J. Math. Anal. Appl. 18 (1967), 145-174. Zbl0145.24404MR0224391DOI
- Goguen, J. A., , Synthese 19 (1968), 325-373. DOI
- Gottwald, S., Treatise on Many-Valued Logics., Research Studies Press, Baldock 2001. MR1856623
- Huang, H. L., Shi, F.-G., , Inf. Sci. 178 (2008), 1141-1151. MR2369556DOI
- Klawonn, F., Fuzzy points, fuzzy relations and fuzzy functions., In: Discovering World with Fuzzy Logic (Novak, Perfilieva, eds.), Physica-Verlag, 2000, pp. 431-453. MR1858110
- Klawonn, F., Castro, J. L., Similarity in fuzzy reasoning., Mathware Soft Comput. 2 (1995), 197-228. MR1395432
- Konecny, J., Krupka, M., , Fuzzy Sets Syst. 320 (2017), 1, 64-80. MR3650347DOI
- Li, H. Y., Shi, F.-G., , Fuzzy Sets Syst., 161 (2010) 988-1001. MR2592437DOI
- Li, J., Shi, F.-G., -fuzzy convexity induced by -convex fuzzy sublattice degree., Iran. J. Fuzzy Syst. 14 (2017), 5, 83-102. MR3751405
- Liang, C. Y., Shi, F.-G., , J. Intell. Fuzzy Syst. 27 (2014), 2665-2677. MR3279817DOI
- Pang, B., , J. Comput. Appl. Math. 39 (2020), 41. MR4059965DOI
- Pang, B., , Quaest. Math. 43 (2020), 11, 1541-1561. MR4181551DOI
- Pang, B., , Fuzzy Sets Syst.473 (2023), 108737. MR4652787DOI
- Pang, B., , IEEE T. fuzzy Syst. 31 (2023), 4, 1071-1082. DOI
- Pawlak, Z., , Fuzzy Sets Syst. 17 (1985), 99-102. MR0808468DOI
- Shen, Y. T., Xiong, Y. J., Xia, W., Soatto, S., Towards backward-compatible representation learning., In: Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 6368-6377.
- Shi, F.-G., , Fuzzy Syst. Math. 4 (1995), 65-72. MR1384670DOI
- Shi, F.-G., -fuzzy relation and -fuzzy subgroup., J. Fuzzy Math. 8 (2000), 491-499. MR1767444
- Shi, F.-G., Xin, X., , J. Adv. Res. Pure Math. 3 (2011), 92-108. MR2859291DOI
- Shi, Y., Pang, B., Baets, B. De, , Fuzzy Sets Syst. 466 (2023), 108443. MR4594083DOI
- Sun, Y., Mi, J. S., Chen, J. K., Liu, W., , Knowl. Based Syst. 215 (2021), 106594. DOI
- Sun, Y., Shi, F.-G., , Inf. Sci. 645 (2023), 119324. DOI
- Tepavc̆ević, A., Trajkovski, D., , Fuzzy Sets Syst. 123 (2001), 209-216. MR1849406DOI
- Wang, G. J., , Fuzzy Sets Syst. 47 (1992), 351-376. MR1166284DOI
- Xiu, Z. Y., Li, Q.-H., Pang, B., Fuzzy convergence structures in the framework of L-convex spaces., Iran. J. Fuzzy Syst. 17 (2020), 4, 139-150. MR4155855
- Yao, Y. Y., , Int. J. Approx. Reason. 116 (2020), 106-125. MR4031434DOI
- Ying, M., , Fuzzy Sets Syst. 39 (3) (1991), 303-321. MR1095905DOI
- Yuan, B., Wu, W., , Fuzzy Sets Syst. 35 (1990), 231-240. MR1050603DOI
- Zadeh, L. A., , Inform. Control. 8 (1965), 338-353. Zbl0942.00007MR0219427DOI
- Zadeh, L. A., , Inf. Sci. 3 (1971) 177-200. MR0297650DOI
- Zadeh, L. A., , Inf. Sci. 8 (1975), 3, 199-251. MR0386369DOI
- Zhang, L., Pang, B., , Hacet. J. Math. Stat. 51 (2022), 5, 1348-1370. MR4484516DOI
- Pang, L. Zhang andB., , Filomat 37 (2023), 9, 2859-2877. MR4573748DOI
- Zhang, L., Pang, B., Li, W., Subcategories of the category of stratified -semiuniform convergence tower spaces., Iran. J. Fuzzy Syst. 20 (2023), 4, 179-192. MR3932538
- Zhang, L., Pang, B., , Fuzzy Sets Syst. 455 (2023), 198-221. MR4543117DOI
- Zhao, F. F., Pang, B., , Filomat 36 (2022), 3, 979-1003. MR4424058DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.