Degrees of compatible L -subsets and compatible mappings

Fu Gui Shi; Yan Sun

Kybernetika (2024)

  • Issue: 2, page 172-196
  • ISSN: 0023-5954

Abstract

top
Based on a completely distributive lattice L , degrees of compatible L -subsets and compatible mappings are introduced in an L -approximation space and their characterizations are given by four kinds of cut sets of L -subsets and L -equivalences, respectively. Besides, some characterizations of compatible mappings and compatible degrees of mappings are given by compatible L -subsets and compatible degrees of L -subsets. Finally, the notion of complete L -sublattices is introduced and it is shown that the product of complete L -sublattices is still a complete L -sublattice and the compatible degree of an L -subset is a complete L -sublattice.

How to cite

top

Shi, Fu Gui, and Sun, Yan. "Degrees of compatible $L$-subsets and compatible mappings." Kybernetika (2024): 172-196. <http://eudml.org/doc/299434>.

@article{Shi2024,
abstract = {Based on a completely distributive lattice $L$, degrees of compatible $L$-subsets and compatible mappings are introduced in an $L$-approximation space and their characterizations are given by four kinds of cut sets of $L$-subsets and $L$-equivalences, respectively. Besides, some characterizations of compatible mappings and compatible degrees of mappings are given by compatible $L$-subsets and compatible degrees of $L$-subsets. Finally, the notion of complete $L$-sublattices is introduced and it is shown that the product of complete $L$-sublattices is still a complete $L$-sublattice and the compatible degree of an $L$-subset is a complete $L$-sublattice.},
author = {Shi, Fu Gui, Sun, Yan},
journal = {Kybernetika},
keywords = {$L$-approximation spaces; compatible $L$-subsets; compatible mappings; complete $L$-sublattices},
language = {eng},
number = {2},
pages = {172-196},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Degrees of compatible $L$-subsets and compatible mappings},
url = {http://eudml.org/doc/299434},
year = {2024},
}

TY - JOUR
AU - Shi, Fu Gui
AU - Sun, Yan
TI - Degrees of compatible $L$-subsets and compatible mappings
JO - Kybernetika
PY - 2024
PB - Institute of Information Theory and Automation AS CR
IS - 2
SP - 172
EP - 196
AB - Based on a completely distributive lattice $L$, degrees of compatible $L$-subsets and compatible mappings are introduced in an $L$-approximation space and their characterizations are given by four kinds of cut sets of $L$-subsets and $L$-equivalences, respectively. Besides, some characterizations of compatible mappings and compatible degrees of mappings are given by compatible $L$-subsets and compatible degrees of $L$-subsets. Finally, the notion of complete $L$-sublattices is introduced and it is shown that the product of complete $L$-sublattices is still a complete $L$-sublattice and the compatible degree of an $L$-subset is a complete $L$-sublattice.
LA - eng
KW - $L$-approximation spaces; compatible $L$-subsets; compatible mappings; complete $L$-sublattices
UR - http://eudml.org/doc/299434
ER -

References

top
  1. Ajmal, N., Thomas, K. V., , Inf. Sci. 79 (1994), 271-291. MR1282402DOI
  2. Bandler, W., Kohout, L. J., , Int. J. Man-Machine Studies 12 (1980), 89-116. MR0576477DOI
  3. Bělohlávek, R., Fuzzy Relational Systems. Foundations and Principles., Kluwer Academic Publishers, New York 2002. 
  4. Bělohlávek, R., Dvořák, J., Outrata, J., , J. Comput. Syst. Sci. 73 (2007), 6, 1012-1022. MR2332731DOI
  5. Berry, V., Nicolas, F., , IEEE/ACM Trans. Comput. Biol. Bioinform. 3 (2006), 3, 289-302. DOI
  6. Birkhoff, G., Lattice Theory., AMS, 1948. Zbl0537.06001MR0029876
  7. Demirci, M., , Int. J. Gen. Syst. 32 (2003), 123-155. MR1967126DOI
  8. Dong, Y. Y., Shi, F.-G., , Mathematics 9 (2021), 14, 1596. DOI
  9. Fang, J. M., Residuated Lattices and Fuzzy Sets., Science Press (in Chinese), 2012. 
  10. Ganapathy, G., Warnow, T. J., , Lecture Notes Comput. Sci. 2462 (2002), 122-134. MR2091821DOI
  11. Ganter, B., Wille, R., , Springer, 1999. MR1707295DOI
  12. Gao, Y., Pang, B., , Hacet. J. Math. Stat. 53 (2024), 1, 88-106. MR4714280DOI
  13. Gégény, D., Radeleczki, S., , Int. J. Approx. Reason. 142 (2022), 1-12. MR4343710DOI
  14. Goguen, J. A., , J. Math. Anal. Appl. 18 (1967), 145-174. Zbl0145.24404MR0224391DOI
  15. Goguen, J. A., , Synthese 19 (1968), 325-373. DOI
  16. Gottwald, S., Treatise on Many-Valued Logics., Research Studies Press, Baldock 2001. MR1856623
  17. Huang, H. L., Shi, F.-G., , Inf. Sci. 178 (2008), 1141-1151. MR2369556DOI
  18. Klawonn, F., Fuzzy points, fuzzy relations and fuzzy functions., In: Discovering World with Fuzzy Logic (Novak, Perfilieva, eds.), Physica-Verlag, 2000, pp. 431-453. MR1858110
  19. Klawonn, F., Castro, J. L., Similarity in fuzzy reasoning., Mathware Soft Comput. 2 (1995), 197-228. MR1395432
  20. Konecny, J., Krupka, M., , Fuzzy Sets Syst. 320 (2017), 1, 64-80. MR3650347DOI
  21. Li, H. Y., Shi, F.-G., , Fuzzy Sets Syst., 161 (2010) 988-1001. MR2592437DOI
  22. Li, J., Shi, F.-G., L -fuzzy convexity induced by L -convex fuzzy sublattice degree., Iran. J. Fuzzy Syst. 14 (2017), 5, 83-102. MR3751405
  23. Liang, C. Y., Shi, F.-G., , J. Intell. Fuzzy Syst. 27 (2014), 2665-2677. MR3279817DOI
  24. Pang, B., , J. Comput. Appl. Math. 39 (2020), 41. MR4059965DOI
  25. Pang, B., , Quaest. Math. 43 (2020), 11, 1541-1561. MR4181551DOI
  26. Pang, B., , Fuzzy Sets Syst.473 (2023), 108737. MR4652787DOI
  27. Pang, B., , IEEE T. fuzzy Syst. 31 (2023), 4, 1071-1082. DOI
  28. Pawlak, Z., , Fuzzy Sets Syst. 17 (1985), 99-102. MR0808468DOI
  29. Shen, Y. T., Xiong, Y. J., Xia, W., Soatto, S., Towards backward-compatible representation learning., In: Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 6368-6377. 
  30. Shi, F.-G., , Fuzzy Syst. Math. 4 (1995), 65-72. MR1384670DOI
  31. Shi, F.-G., L -fuzzy relation and L -fuzzy subgroup., J. Fuzzy Math. 8 (2000), 491-499. MR1767444
  32. Shi, F.-G., Xin, X., , J. Adv. Res. Pure Math. 3 (2011), 92-108. MR2859291DOI
  33. Shi, Y., Pang, B., Baets, B. De, , Fuzzy Sets Syst. 466 (2023), 108443. MR4594083DOI
  34. Sun, Y., Mi, J. S., Chen, J. K., Liu, W., , Knowl. Based Syst. 215 (2021), 106594. DOI
  35. Sun, Y., Shi, F.-G., , Inf. Sci. 645 (2023), 119324. DOI
  36. Tepavc̆ević, A., Trajkovski, D., , Fuzzy Sets Syst. 123 (2001), 209-216. MR1849406DOI
  37. Wang, G. J., , Fuzzy Sets Syst. 47 (1992), 351-376. MR1166284DOI
  38. Xiu, Z. Y., Li, Q.-H., Pang, B., Fuzzy convergence structures in the framework of L-convex spaces., Iran. J. Fuzzy Syst. 17 (2020), 4, 139-150. MR4155855
  39. Yao, Y. Y., , Int. J. Approx. Reason. 116 (2020), 106-125. MR4031434DOI
  40. Ying, M., , Fuzzy Sets Syst. 39 (3) (1991), 303-321. MR1095905DOI
  41. Yuan, B., Wu, W., , Fuzzy Sets Syst. 35 (1990), 231-240. MR1050603DOI
  42. Zadeh, L. A., , Inform. Control. 8 (1965), 338-353. Zbl0942.00007MR0219427DOI
  43. Zadeh, L. A., , Inf. Sci. 3 (1971) 177-200. MR0297650DOI
  44. Zadeh, L. A., , Inf. Sci. 8 (1975), 3, 199-251. MR0386369DOI
  45. Zhang, L., Pang, B., , Hacet. J. Math. Stat. 51 (2022), 5, 1348-1370. MR4484516DOI
  46. Pang, L. Zhang andB., , Filomat 37 (2023), 9, 2859-2877. MR4573748DOI
  47. Zhang, L., Pang, B., Li, W., Subcategories of the category of stratified ( L , M ) -semiuniform convergence tower spaces., Iran. J. Fuzzy Syst. 20 (2023), 4, 179-192. MR3932538
  48. Zhang, L., Pang, B., , Fuzzy Sets Syst. 455 (2023), 198-221. MR4543117DOI
  49. Zhao, F. F., Pang, B., , Filomat 36 (2022), 3, 979-1003. MR4424058DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.