Universality, complexity and asymptotically uniformly smooth Banach spaces

Ryan M. Causey; Gilles Lancien

Commentationes Mathematicae Universitatis Carolinae (2023)

  • Volume: 64, Issue: 1, page 1-17
  • ISSN: 0010-2628

Abstract

top
For 1 < p , we show the existence of a Banach space which is both injectively and surjectively universal for the class of all separable Banach spaces with an equivalent p -asymptotically uniformly smooth norm. We prove that this class is analytic complete in the class of separable Banach spaces. These results extend previous works by N. J. Kalton, D. Werner and O. Kurka in the case p = .

How to cite

top

Causey, Ryan M., and Lancien, Gilles. "Universality, complexity and asymptotically uniformly smooth Banach spaces." Commentationes Mathematicae Universitatis Carolinae 64.1 (2023): 1-17. <http://eudml.org/doc/299439>.

@article{Causey2023,
abstract = {For $1 < p \le \infty $, we show the existence of a Banach space which is both injectively and surjectively universal for the class of all separable Banach spaces with an equivalent $p$-asymptotically uniformly smooth norm. We prove that this class is analytic complete in the class of separable Banach spaces. These results extend previous works by N. J. Kalton, D. Werner and O. Kurka in the case $p=\infty $.},
author = {Causey, Ryan M., Lancien, Gilles},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {asymptotic smoothness in Banach space; universality; complexity},
language = {eng},
number = {1},
pages = {1-17},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Universality, complexity and asymptotically uniformly smooth Banach spaces},
url = {http://eudml.org/doc/299439},
volume = {64},
year = {2023},
}

TY - JOUR
AU - Causey, Ryan M.
AU - Lancien, Gilles
TI - Universality, complexity and asymptotically uniformly smooth Banach spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 1
SP - 1
EP - 17
AB - For $1 < p \le \infty $, we show the existence of a Banach space which is both injectively and surjectively universal for the class of all separable Banach spaces with an equivalent $p$-asymptotically uniformly smooth norm. We prove that this class is analytic complete in the class of separable Banach spaces. These results extend previous works by N. J. Kalton, D. Werner and O. Kurka in the case $p=\infty $.
LA - eng
KW - asymptotic smoothness in Banach space; universality; complexity
UR - http://eudml.org/doc/299439
ER -

References

top
  1. Argyros S. A., Deliyanni I., 10.1090/S0002-9947-97-01774-1, Trans. Amer. Math. Soc. 349 (1997), no. 3, 973–995. MR1390965DOI10.1090/S0002-9947-97-01774-1
  2. Bossard B., Théorie descriptive des ensembles en géométrie des espaces de Banach, Thèse de doctorat de Mathématiques de l'Université Paris VI, Paris, 1994 (French). 
  3. Bossard B., 10.4064/fm172-2-3, Fund. Math. 172 (2002), no. 2, 117–151. MR1899225DOI10.4064/fm172-2-3
  4. Causey R. M., 10.1007/s11117-018-0568-3, Positivity 22 (2018), no. 5, 1197–1221. MR3863608DOI10.1007/s11117-018-0568-3
  5. Causey R. M., Navoyan K. V., 10.1016/j.jmaa.2019.06.081, J. Math. Anal. Appl. 479 (2019), no. 1, 1324–1354. MR3987087DOI10.1016/j.jmaa.2019.06.081
  6. Dilworth S. J., Kutzarova D., Lancien G., Randrianarivony N. L., 10.1007/s13398-016-0278-2, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 111 (2017), no. 1, 101–113. MR3596040DOI10.1007/s13398-016-0278-2
  7. Freeman D., Odell E., Schlumprecht Th., Zsák A., Banach spaces of bounded Szlenk index. II, Fundam. Math. 205 (2009), no. 2, 162–177. MR2545450
  8. Godefroy G., The isomorphism classes of l p are Borel, Houston J. Math. 43 (2017), no. 3, 947–951. MR3739042
  9. Godefroy G., Kalton N., Lancien G., 10.1007/PL00001638, Geom. Funct. Anal. 10 (2000), no. 4, 798–820. MR1791140DOI10.1007/PL00001638
  10. Godefroy G., Saint-Raymond J., 10.1016/j.jfa.2018.01.018, J. Funct. Anal. 275 (2018), no. 4, 1008–1022. MR3807784DOI10.1016/j.jfa.2018.01.018
  11. Johnson W. B., Lindenstrauss J., Preiss D., Schechtman G., Almost Fréchet differentiability of Lipschitz mappings between infinite-dimensional Banach spaces, Proc. London Math. Soc. (3) 84 (2002), no. 3, 711–746. MR1888429
  12. Johnson W. B., Zippin M., 10.1007/BF02756824, Israel. J. Math. 17 (1974), 50–55. MR0358296DOI10.1007/BF02756824
  13. Kalton N. J., Werner D., Property ( M ) , M -ideals, and almost isometric structure of Banach spaces, J. Reine Angew. Math. 461 (1995), 137–178. MR1324212
  14. Kechris A. S., Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156, Springer, New York, 1995. Zbl0819.04002MR1321597
  15. Kurka O., 10.1007/s13398-017-0412-9, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., RACSAM 112 (2018), no. 4, 1101–1123. MR3857045DOI10.1007/s13398-017-0412-9
  16. Kurka O., 10.1007/s11856-019-1851-0, Israel J. Math. 231 (2019), no. 1, 243–268. MR3960007DOI10.1007/s11856-019-1851-0
  17. Lindenstrauss J., Tzafriri L., Classical Banach Spaces I. Sequence Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 92, Springer, Berlin, 1977. MR0500056
  18. Odell E. W., Schlumprecht Th., Embedding into Banach spaces with finite dimensional decompositions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., RACSAM 100 (2006), no. 1–2, 295–323. MR2267413
  19. Prus S., Nearly uniformly smooth Banach spaces, Boll. Un. Mat. Ital. B (7) 3 (1989), no. 3, 507–521. MR1010520
  20. Schechtman G., On Pelczyński's paper “Universal bases" (Studia Math. 32, (1969)), Israel. J. Math. 22 (1975), no. 3–4, 181–184. MR0390730

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.