Universality, complexity and asymptotically uniformly smooth Banach spaces
Ryan M. Causey; Gilles Lancien
Commentationes Mathematicae Universitatis Carolinae (2023)
- Volume: 64, Issue: 1, page 1-17
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topCausey, Ryan M., and Lancien, Gilles. "Universality, complexity and asymptotically uniformly smooth Banach spaces." Commentationes Mathematicae Universitatis Carolinae 64.1 (2023): 1-17. <http://eudml.org/doc/299439>.
@article{Causey2023,
abstract = {For $1 < p \le \infty $, we show the existence of a Banach space which is both injectively and surjectively universal for the class of all separable Banach spaces with an equivalent $p$-asymptotically uniformly smooth norm. We prove that this class is analytic complete in the class of separable Banach spaces. These results extend previous works by N. J. Kalton, D. Werner and O. Kurka in the case $p=\infty $.},
author = {Causey, Ryan M., Lancien, Gilles},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {asymptotic smoothness in Banach space; universality; complexity},
language = {eng},
number = {1},
pages = {1-17},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Universality, complexity and asymptotically uniformly smooth Banach spaces},
url = {http://eudml.org/doc/299439},
volume = {64},
year = {2023},
}
TY - JOUR
AU - Causey, Ryan M.
AU - Lancien, Gilles
TI - Universality, complexity and asymptotically uniformly smooth Banach spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 1
SP - 1
EP - 17
AB - For $1 < p \le \infty $, we show the existence of a Banach space which is both injectively and surjectively universal for the class of all separable Banach spaces with an equivalent $p$-asymptotically uniformly smooth norm. We prove that this class is analytic complete in the class of separable Banach spaces. These results extend previous works by N. J. Kalton, D. Werner and O. Kurka in the case $p=\infty $.
LA - eng
KW - asymptotic smoothness in Banach space; universality; complexity
UR - http://eudml.org/doc/299439
ER -
References
top- Argyros S. A., Deliyanni I., 10.1090/S0002-9947-97-01774-1, Trans. Amer. Math. Soc. 349 (1997), no. 3, 973–995. MR1390965DOI10.1090/S0002-9947-97-01774-1
- Bossard B., Théorie descriptive des ensembles en géométrie des espaces de Banach, Thèse de doctorat de Mathématiques de l'Université Paris VI, Paris, 1994 (French).
- Bossard B., 10.4064/fm172-2-3, Fund. Math. 172 (2002), no. 2, 117–151. MR1899225DOI10.4064/fm172-2-3
- Causey R. M., 10.1007/s11117-018-0568-3, Positivity 22 (2018), no. 5, 1197–1221. MR3863608DOI10.1007/s11117-018-0568-3
- Causey R. M., Navoyan K. V., 10.1016/j.jmaa.2019.06.081, J. Math. Anal. Appl. 479 (2019), no. 1, 1324–1354. MR3987087DOI10.1016/j.jmaa.2019.06.081
- Dilworth S. J., Kutzarova D., Lancien G., Randrianarivony N. L., 10.1007/s13398-016-0278-2, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 111 (2017), no. 1, 101–113. MR3596040DOI10.1007/s13398-016-0278-2
- Freeman D., Odell E., Schlumprecht Th., Zsák A., Banach spaces of bounded Szlenk index. II, Fundam. Math. 205 (2009), no. 2, 162–177. MR2545450
- Godefroy G., The isomorphism classes of are Borel, Houston J. Math. 43 (2017), no. 3, 947–951. MR3739042
- Godefroy G., Kalton N., Lancien G., 10.1007/PL00001638, Geom. Funct. Anal. 10 (2000), no. 4, 798–820. MR1791140DOI10.1007/PL00001638
- Godefroy G., Saint-Raymond J., 10.1016/j.jfa.2018.01.018, J. Funct. Anal. 275 (2018), no. 4, 1008–1022. MR3807784DOI10.1016/j.jfa.2018.01.018
- Johnson W. B., Lindenstrauss J., Preiss D., Schechtman G., Almost Fréchet differentiability of Lipschitz mappings between infinite-dimensional Banach spaces, Proc. London Math. Soc. (3) 84 (2002), no. 3, 711–746. MR1888429
- Johnson W. B., Zippin M., 10.1007/BF02756824, Israel. J. Math. 17 (1974), 50–55. MR0358296DOI10.1007/BF02756824
- Kalton N. J., Werner D., Property , -ideals, and almost isometric structure of Banach spaces, J. Reine Angew. Math. 461 (1995), 137–178. MR1324212
- Kechris A. S., Classical Descriptive Set Theory, Graduate Texts in Mathematics, 156, Springer, New York, 1995. Zbl0819.04002MR1321597
- Kurka O., 10.1007/s13398-017-0412-9, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., RACSAM 112 (2018), no. 4, 1101–1123. MR3857045DOI10.1007/s13398-017-0412-9
- Kurka O., 10.1007/s11856-019-1851-0, Israel J. Math. 231 (2019), no. 1, 243–268. MR3960007DOI10.1007/s11856-019-1851-0
- Lindenstrauss J., Tzafriri L., Classical Banach Spaces I. Sequence Spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, 92, Springer, Berlin, 1977. MR0500056
- Odell E. W., Schlumprecht Th., Embedding into Banach spaces with finite dimensional decompositions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., RACSAM 100 (2006), no. 1–2, 295–323. MR2267413
- Prus S., Nearly uniformly smooth Banach spaces, Boll. Un. Mat. Ital. B (7) 3 (1989), no. 3, 507–521. MR1010520
- Schechtman G., On Pelczyński's paper “Universal bases" (Studia Math. 32, (1969)), Israel. J. Math. 22 (1975), no. 3–4, 181–184. MR0390730
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.