Partitioning a planar graph without chordal 5-cycles into two forests

Yang Wang; Weifan Wang; Jiangxu Kong; Yiqiao Wang

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 2, page 377-388
  • ISSN: 0011-4642

Abstract

top
It was known that the vertex set of every planar graph can be partitioned into three forests. We prove that the vertex set of a planar graph without chordal 5-cycles can be partitioned into two forests. This extends a result obtained by Raspaud and Wang in 2008.

How to cite

top

Wang, Yang, et al. "Partitioning a planar graph without chordal 5-cycles into two forests." Czechoslovak Mathematical Journal 74.2 (2024): 377-388. <http://eudml.org/doc/299440>.

@article{Wang2024,
abstract = {It was known that the vertex set of every planar graph can be partitioned into three forests. We prove that the vertex set of a planar graph without chordal 5-cycles can be partitioned into two forests. This extends a result obtained by Raspaud and Wang in 2008.},
author = {Wang, Yang, Wang, Weifan, Kong, Jiangxu, Wang, Yiqiao},
journal = {Czechoslovak Mathematical Journal},
keywords = {planar graph; vertex-arboricity; forest; vertex partition},
language = {eng},
number = {2},
pages = {377-388},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Partitioning a planar graph without chordal 5-cycles into two forests},
url = {http://eudml.org/doc/299440},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Wang, Yang
AU - Wang, Weifan
AU - Kong, Jiangxu
AU - Wang, Yiqiao
TI - Partitioning a planar graph without chordal 5-cycles into two forests
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 377
EP - 388
AB - It was known that the vertex set of every planar graph can be partitioned into three forests. We prove that the vertex set of a planar graph without chordal 5-cycles can be partitioned into two forests. This extends a result obtained by Raspaud and Wang in 2008.
LA - eng
KW - planar graph; vertex-arboricity; forest; vertex partition
UR - http://eudml.org/doc/299440
ER -

References

top
  1. Borodin, O. V., Ivanova, A. O., 10.1002/jgt.20394, J. Graph Theory 62 (2009), 234-240. (2009) Zbl1180.05035MR2566928DOI10.1002/jgt.20394
  2. Chartrand, G., Kronk, H. V., 10.1112/jlms/s1-44.1.612, J. Lond. Math. Soc. 44 (1969), 612-616. (1969) Zbl0175.50505MR0239996DOI10.1112/jlms/s1-44.1.612
  3. Chartrand, G., Kronk, H. V., Wall, C. E., 10.1007/BF02760181, Isr. J. Math. 6 (1968), 169-175. (1968) Zbl0164.54201MR0236049DOI10.1007/BF02760181
  4. Chen, M., Raspaud, A., Wang, W., 10.1016/j.ejc.2011.09.017, Eur. J. Comb. 33 (2012), 905-923. (2012) Zbl1250.05062MR2889524DOI10.1016/j.ejc.2011.09.017
  5. Garey, M. R., Johnson, D. S., Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, New York (1979). (1979) Zbl0411.68039MR0519066
  6. Hakimi, S. L., Schmeichel, E. F., 10.1137/0402007, SIAM J. Discrete Math. 2 (1989), 64-67. (1989) Zbl0684.05028MR0976789DOI10.1137/0402007
  7. Huang, D., Shiu, W. C., Wang, W., 10.1016/j.disc.2012.03.035, Discrete Math. 312 (2012), 2304-2315. (2012) Zbl1245.05029MR2926103DOI10.1016/j.disc.2012.03.035
  8. Huang, D., Wang, W., 10.1080/00207160.2012.727989, Int. J. Comput. Math. 90 (2013), 258-272. (2013) Zbl1278.05100MR3016834DOI10.1080/00207160.2012.727989
  9. Raspaud, A., Wang, W., 10.1016/j.ejc.2007.11.022, Eur. J. Comb. 29 (2008), 1064-1075. (2008) Zbl1144.05024MR2408378DOI10.1016/j.ejc.2007.11.022
  10. Stein, S. K., 10.2140/pjm.1971.37.217, Pac. J. Math. 37 (1971), 217-224. (1971) Zbl0194.56101MR0306053DOI10.2140/pjm.1971.37.217
  11. Wang, Y., Wang, Y., Lih, K.-W., 10.1002/jgt.23062, J. Graph Theory 106 (2024), 30-56. (2024) Zbl7823339MR4730107DOI10.1002/jgt.23062

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.