Partitioning a planar graph without chordal 5-cycles into two forests
Yang Wang; Weifan Wang; Jiangxu Kong; Yiqiao Wang
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 2, page 377-388
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topWang, Yang, et al. "Partitioning a planar graph without chordal 5-cycles into two forests." Czechoslovak Mathematical Journal 74.2 (2024): 377-388. <http://eudml.org/doc/299440>.
@article{Wang2024,
abstract = {It was known that the vertex set of every planar graph can be partitioned into three forests. We prove that the vertex set of a planar graph without chordal 5-cycles can be partitioned into two forests. This extends a result obtained by Raspaud and Wang in 2008.},
author = {Wang, Yang, Wang, Weifan, Kong, Jiangxu, Wang, Yiqiao},
journal = {Czechoslovak Mathematical Journal},
keywords = {planar graph; vertex-arboricity; forest; vertex partition},
language = {eng},
number = {2},
pages = {377-388},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Partitioning a planar graph without chordal 5-cycles into two forests},
url = {http://eudml.org/doc/299440},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Wang, Yang
AU - Wang, Weifan
AU - Kong, Jiangxu
AU - Wang, Yiqiao
TI - Partitioning a planar graph without chordal 5-cycles into two forests
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 377
EP - 388
AB - It was known that the vertex set of every planar graph can be partitioned into three forests. We prove that the vertex set of a planar graph without chordal 5-cycles can be partitioned into two forests. This extends a result obtained by Raspaud and Wang in 2008.
LA - eng
KW - planar graph; vertex-arboricity; forest; vertex partition
UR - http://eudml.org/doc/299440
ER -
References
top- Borodin, O. V., Ivanova, A. O., 10.1002/jgt.20394, J. Graph Theory 62 (2009), 234-240. (2009) Zbl1180.05035MR2566928DOI10.1002/jgt.20394
- Chartrand, G., Kronk, H. V., 10.1112/jlms/s1-44.1.612, J. Lond. Math. Soc. 44 (1969), 612-616. (1969) Zbl0175.50505MR0239996DOI10.1112/jlms/s1-44.1.612
- Chartrand, G., Kronk, H. V., Wall, C. E., 10.1007/BF02760181, Isr. J. Math. 6 (1968), 169-175. (1968) Zbl0164.54201MR0236049DOI10.1007/BF02760181
- Chen, M., Raspaud, A., Wang, W., 10.1016/j.ejc.2011.09.017, Eur. J. Comb. 33 (2012), 905-923. (2012) Zbl1250.05062MR2889524DOI10.1016/j.ejc.2011.09.017
- Garey, M. R., Johnson, D. S., Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, New York (1979). (1979) Zbl0411.68039MR0519066
- Hakimi, S. L., Schmeichel, E. F., 10.1137/0402007, SIAM J. Discrete Math. 2 (1989), 64-67. (1989) Zbl0684.05028MR0976789DOI10.1137/0402007
- Huang, D., Shiu, W. C., Wang, W., 10.1016/j.disc.2012.03.035, Discrete Math. 312 (2012), 2304-2315. (2012) Zbl1245.05029MR2926103DOI10.1016/j.disc.2012.03.035
- Huang, D., Wang, W., 10.1080/00207160.2012.727989, Int. J. Comput. Math. 90 (2013), 258-272. (2013) Zbl1278.05100MR3016834DOI10.1080/00207160.2012.727989
- Raspaud, A., Wang, W., 10.1016/j.ejc.2007.11.022, Eur. J. Comb. 29 (2008), 1064-1075. (2008) Zbl1144.05024MR2408378DOI10.1016/j.ejc.2007.11.022
- Stein, S. K., 10.2140/pjm.1971.37.217, Pac. J. Math. 37 (1971), 217-224. (1971) Zbl0194.56101MR0306053DOI10.2140/pjm.1971.37.217
- Wang, Y., Wang, Y., Lih, K.-W., 10.1002/jgt.23062, J. Graph Theory 106 (2024), 30-56. (2024) Zbl7823339MR4730107DOI10.1002/jgt.23062
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.