The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Partitioning a planar graph without chordal 5-cycles into two forests”

On long cycles through four prescribed vertices of a polyhedral graph

Jochen Harant, Stanislav Jendrol', Hansjoachim Walther (2008)

Discussiones Mathematicae Graph Theory

Similarity:

For a 3-connected planar graph G with circumference c ≥ 44 it is proved that G has a cycle of length at least (1/36)c+(20/3) through any four vertices of G.

A Triple of Heavy Subgraphs Ensuring Pancyclicity of 2-Connected Graphs

Wojciech Wide (2017)

Discussiones Mathematicae Graph Theory

Similarity:

A graph G on n vertices is said to be pancyclic if it contains cycles of all lengths k for k ∈ {3, . . . , n}. A vertex v ∈ V (G) is called super-heavy if the number of its neighbours in G is at least (n+1)/2. For a given graph H we say that G is H-f1-heavy if for every induced subgraph K of G isomorphic to H and every two vertices u, v ∈ V (K), dK(u, v) = 2 implies that at least one of them is super-heavy. For a family of graphs H we say that G is H-f1-heavy, if G is H-f1-heavy for...

On the existence of a cycle of length at least 7 in a (1,≤ 2)-twin-free graph

David Auger, Irène Charon, Olivier Hudry, Antoine Lobstein (2010)

Discussiones Mathematicae Graph Theory

Similarity:

We consider a simple, undirected graph G. The ball of a subset Y of vertices in G is the set of vertices in G at distance at most one from a vertex in Y. Assuming that the balls of all subsets of at most two vertices in G are distinct, we prove that G admits a cycle with length at least 7.

L(2, 1)-Labelings of Some Families of Oriented Planar Graphs

Sagnik Sen (2014)

Discussiones Mathematicae Graph Theory

Similarity:

In this paper we determine, or give lower and upper bounds on, the 2-dipath and oriented L(2, 1)-span of the family of planar graphs, planar graphs with girth 5, 11, 16, partial k-trees, outerplanar graphs and cacti.