A note on ( a , b ) -Fibonacci sequences and specially multiplicative arithmetic functions

Emil Daniel Schwab; Gabriela Schwab

Mathematica Bohemica (2024)

  • Volume: 149, Issue: 2, page 237-246
  • ISSN: 0862-7959

Abstract

top
A specially multiplicative arithmetic function is the Dirichlet convolution of two completely multiplicative arithmetic functions. The aim of this paper is to prove explicitly that two mathematical objects, namely ( a , b ) -Fibonacci sequences and specially multiplicative prime-independent arithmetic functions, are equivalent in the sense that each can be reconstructed from the other. Replacing one with another, the exploration space of both mathematical objects expands significantly.

How to cite

top

Schwab, Emil Daniel, and Schwab, Gabriela. "A note on $(a,b)$-Fibonacci sequences and specially multiplicative arithmetic functions." Mathematica Bohemica 149.2 (2024): 237-246. <http://eudml.org/doc/299441>.

@article{Schwab2024,
abstract = {A specially multiplicative arithmetic function is the Dirichlet convolution of two completely multiplicative arithmetic functions. The aim of this paper is to prove explicitly that two mathematical objects, namely $(a,b)$-Fibonacci sequences and specially multiplicative prime-independent arithmetic functions, are equivalent in the sense that each can be reconstructed from the other. Replacing one with another, the exploration space of both mathematical objects expands significantly.},
author = {Schwab, Emil Daniel, Schwab, Gabriela},
journal = {Mathematica Bohemica},
keywords = {Fibonacci sequence; multiplicative arithmetic function; Binet's formula; Busche-Ramanujan identities; Möbius inversion},
language = {eng},
number = {2},
pages = {237-246},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on $(a,b)$-Fibonacci sequences and specially multiplicative arithmetic functions},
url = {http://eudml.org/doc/299441},
volume = {149},
year = {2024},
}

TY - JOUR
AU - Schwab, Emil Daniel
AU - Schwab, Gabriela
TI - A note on $(a,b)$-Fibonacci sequences and specially multiplicative arithmetic functions
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 2
SP - 237
EP - 246
AB - A specially multiplicative arithmetic function is the Dirichlet convolution of two completely multiplicative arithmetic functions. The aim of this paper is to prove explicitly that two mathematical objects, namely $(a,b)$-Fibonacci sequences and specially multiplicative prime-independent arithmetic functions, are equivalent in the sense that each can be reconstructed from the other. Replacing one with another, the exploration space of both mathematical objects expands significantly.
LA - eng
KW - Fibonacci sequence; multiplicative arithmetic function; Binet's formula; Busche-Ramanujan identities; Möbius inversion
UR - http://eudml.org/doc/299441
ER -

References

top
  1. Apostol, T. M., 10.2140/pjm.1970.32.21, Pac. J. Math. 32 (1970), 21-27. (1970) Zbl0188.34101MR0253999DOI10.2140/pjm.1970.32.21
  2. Apostol, T. M., 10.1007/978-1-4757-5579-4, Undergraduate Texts in Mathematics. Springer, New York (1976). (1976) Zbl0335.10001MR0434929DOI10.1007/978-1-4757-5579-4
  3. Brown, T. C., Hsu, L. C., Wang, J., Shiue, P. J.-S., On a certain kind of generalized number-theoretical Möbius function, Math. Sci. 25 (2000), 72-77. (2000) Zbl0965.11002MR1807073
  4. Catarino, P., 10.12988/ijma.2013.35131, Int. J. Math. Anal., Ruse 7 (2013), 1877-1884. (2013) Zbl1285.11024MR3084999DOI10.12988/ijma.2013.35131
  5. Cohen, E., 10.1090/S0002-9939-1964-0166146-9, Proc. Am. Math. Soc. 15 (1964), 534-539. (1964) Zbl0124.02704MR0166146DOI10.1090/S0002-9939-1964-0166146-9
  6. Falcón, S., Plaza, Á., 10.1016/j.chaos.2006.10.022, Chaos Solitons Fractals 33 (2007), 38-49. (2007) Zbl1152.11308MR2301846DOI10.1016/j.chaos.2006.10.022
  7. Haukkanen, P., 10.1080/00150517.1988.12429613, Fibonacci Q. 26 (1988), 325-327. (1988) Zbl0662.10003MR0967651DOI10.1080/00150517.1988.12429613
  8. Horadam, A. F., 10.1080/00150517.1965.12431416, Fibonacci Q. 3 (1965), 161-176. (1965) Zbl0131.04103MR0186615DOI10.1080/00150517.1965.12431416
  9. Horadam, A. F., 10.1215/S0012-7094-65-03244-8, Duke Math. J. 32 (1965), 437-446. (1965) Zbl0131.04104MR0177975DOI10.1215/S0012-7094-65-03244-8
  10. Hsu, L. C., 10.1080/00150517.1995.12429161, Fibonacci Q. 33 (1995), 169-173. (1995) Zbl0822.11005MR1329025DOI10.1080/00150517.1995.12429161
  11. Jhala, D., Sisodiya, K., Rathore, G. P. S., 10.12988/ijma.2013.13052, Int. J. Math. Anal., Ruse 7 (2013), 551-556. (2013) Zbl1283.11028MR3004318DOI10.12988/ijma.2013.13052
  12. Kalman, D., Mena, R., 10.2307/3219318, Math. Mag. 76 (2003), 167-181. (2003) Zbl1048.11014MR2083847DOI10.2307/3219318
  13. McCarthy, P. J., 10.1007/978-1-4613-8620-9, Universitext. Springer, New York (1986). (1986) Zbl0591.10003MR0815514DOI10.1007/978-1-4613-8620-9
  14. McCarthy, P. J., Sivaramakrishnan, R., 10.1080/00150517.1990.12429476, Fibonacci Q. 28 (1990), 363-370. (1990) Zbl0721.11008MR1077503DOI10.1080/00150517.1990.12429476
  15. Sastry, K. P. R., On the generalized type Möbius functions, Math. Stud. 31 (1963), 85-88. (1963) Zbl0119.28001MR0166140
  16. Schwab, E. D., Schwab, G., k -Fibonacci numbers and Möbius functions, Integers 22 (2022), Article ID A64, 11 pages. (2022) Zbl07569238MR4451564

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.