A note on -Fibonacci sequences and specially multiplicative arithmetic functions
Emil Daniel Schwab; Gabriela Schwab
Mathematica Bohemica (2024)
- Volume: 149, Issue: 2, page 237-246
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topSchwab, Emil Daniel, and Schwab, Gabriela. "A note on $(a,b)$-Fibonacci sequences and specially multiplicative arithmetic functions." Mathematica Bohemica 149.2 (2024): 237-246. <http://eudml.org/doc/299441>.
@article{Schwab2024,
abstract = {A specially multiplicative arithmetic function is the Dirichlet convolution of two completely multiplicative arithmetic functions. The aim of this paper is to prove explicitly that two mathematical objects, namely $(a,b)$-Fibonacci sequences and specially multiplicative prime-independent arithmetic functions, are equivalent in the sense that each can be reconstructed from the other. Replacing one with another, the exploration space of both mathematical objects expands significantly.},
author = {Schwab, Emil Daniel, Schwab, Gabriela},
journal = {Mathematica Bohemica},
keywords = {Fibonacci sequence; multiplicative arithmetic function; Binet's formula; Busche-Ramanujan identities; Möbius inversion},
language = {eng},
number = {2},
pages = {237-246},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on $(a,b)$-Fibonacci sequences and specially multiplicative arithmetic functions},
url = {http://eudml.org/doc/299441},
volume = {149},
year = {2024},
}
TY - JOUR
AU - Schwab, Emil Daniel
AU - Schwab, Gabriela
TI - A note on $(a,b)$-Fibonacci sequences and specially multiplicative arithmetic functions
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 2
SP - 237
EP - 246
AB - A specially multiplicative arithmetic function is the Dirichlet convolution of two completely multiplicative arithmetic functions. The aim of this paper is to prove explicitly that two mathematical objects, namely $(a,b)$-Fibonacci sequences and specially multiplicative prime-independent arithmetic functions, are equivalent in the sense that each can be reconstructed from the other. Replacing one with another, the exploration space of both mathematical objects expands significantly.
LA - eng
KW - Fibonacci sequence; multiplicative arithmetic function; Binet's formula; Busche-Ramanujan identities; Möbius inversion
UR - http://eudml.org/doc/299441
ER -
References
top- Apostol, T. M., 10.2140/pjm.1970.32.21, Pac. J. Math. 32 (1970), 21-27. (1970) Zbl0188.34101MR0253999DOI10.2140/pjm.1970.32.21
- Apostol, T. M., 10.1007/978-1-4757-5579-4, Undergraduate Texts in Mathematics. Springer, New York (1976). (1976) Zbl0335.10001MR0434929DOI10.1007/978-1-4757-5579-4
- Brown, T. C., Hsu, L. C., Wang, J., Shiue, P. J.-S., On a certain kind of generalized number-theoretical Möbius function, Math. Sci. 25 (2000), 72-77. (2000) Zbl0965.11002MR1807073
- Catarino, P., 10.12988/ijma.2013.35131, Int. J. Math. Anal., Ruse 7 (2013), 1877-1884. (2013) Zbl1285.11024MR3084999DOI10.12988/ijma.2013.35131
- Cohen, E., 10.1090/S0002-9939-1964-0166146-9, Proc. Am. Math. Soc. 15 (1964), 534-539. (1964) Zbl0124.02704MR0166146DOI10.1090/S0002-9939-1964-0166146-9
- Falcón, S., Plaza, Á., 10.1016/j.chaos.2006.10.022, Chaos Solitons Fractals 33 (2007), 38-49. (2007) Zbl1152.11308MR2301846DOI10.1016/j.chaos.2006.10.022
- Haukkanen, P., 10.1080/00150517.1988.12429613, Fibonacci Q. 26 (1988), 325-327. (1988) Zbl0662.10003MR0967651DOI10.1080/00150517.1988.12429613
- Horadam, A. F., 10.1080/00150517.1965.12431416, Fibonacci Q. 3 (1965), 161-176. (1965) Zbl0131.04103MR0186615DOI10.1080/00150517.1965.12431416
- Horadam, A. F., 10.1215/S0012-7094-65-03244-8, Duke Math. J. 32 (1965), 437-446. (1965) Zbl0131.04104MR0177975DOI10.1215/S0012-7094-65-03244-8
- Hsu, L. C., 10.1080/00150517.1995.12429161, Fibonacci Q. 33 (1995), 169-173. (1995) Zbl0822.11005MR1329025DOI10.1080/00150517.1995.12429161
- Jhala, D., Sisodiya, K., Rathore, G. P. S., 10.12988/ijma.2013.13052, Int. J. Math. Anal., Ruse 7 (2013), 551-556. (2013) Zbl1283.11028MR3004318DOI10.12988/ijma.2013.13052
- Kalman, D., Mena, R., 10.2307/3219318, Math. Mag. 76 (2003), 167-181. (2003) Zbl1048.11014MR2083847DOI10.2307/3219318
- McCarthy, P. J., 10.1007/978-1-4613-8620-9, Universitext. Springer, New York (1986). (1986) Zbl0591.10003MR0815514DOI10.1007/978-1-4613-8620-9
- McCarthy, P. J., Sivaramakrishnan, R., 10.1080/00150517.1990.12429476, Fibonacci Q. 28 (1990), 363-370. (1990) Zbl0721.11008MR1077503DOI10.1080/00150517.1990.12429476
- Sastry, K. P. R., On the generalized type Möbius functions, Math. Stud. 31 (1963), 85-88. (1963) Zbl0119.28001MR0166140
- Schwab, E. D., Schwab, G., -Fibonacci numbers and Möbius functions, Integers 22 (2022), Article ID A64, 11 pages. (2022) Zbl07569238MR4451564
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.