Consecutive square-free values of the type x 2 + y 2 + z 2 + k , x 2 + y 2 + z 2 + k + 1

Ya-Fang Feng

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 1, page 297-310
  • ISSN: 0011-4642

Abstract

top
We show that for any given integer k there exist infinitely many consecutive square-free numbers of the type x 2 + y 2 + z 2 + k , x 2 + y 2 + z 2 + k + 1 . We also establish an asymptotic formula for 1 x , y , z H such that x 2 + y 2 + z 2 + k , x 2 + y 2 + z 2 + k + 1 are square-free. The method we used in this paper is due to Tolev.

How to cite

top

Feng, Ya-Fang. "Consecutive square-free values of the type $x^{2}+y^{2}+z^{2}+k$, $x^{2}+y^{2}+z^{2}+k+1$." Czechoslovak Mathematical Journal 73.1 (2023): 297-310. <http://eudml.org/doc/299442>.

@article{Feng2023,
abstract = {We show that for any given integer $k$ there exist infinitely many consecutive square-free numbers of the type $x^\{2\}+y^\{2\}+z^\{2\}+k$, $x^\{2\}+y^\{2\}+z^\{2\}+k+1$. We also establish an asymptotic formula for $1\le x, y, z \le H$ such that $x^\{2\}+y^\{2\}+z^\{2\}+k$, $x^\{2\}+y^\{2\}+z^\{2\}+k+1$ are square-free. The method we used in this paper is due to Tolev.},
author = {Feng, Ya-Fang},
journal = {Czechoslovak Mathematical Journal},
keywords = {square-free number; Salié sum; Gauss sum},
language = {eng},
number = {1},
pages = {297-310},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Consecutive square-free values of the type $x^\{2\}+y^\{2\}+z^\{2\}+k$, $x^\{2\}+y^\{2\}+z^\{2\}+k+1$},
url = {http://eudml.org/doc/299442},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Feng, Ya-Fang
TI - Consecutive square-free values of the type $x^{2}+y^{2}+z^{2}+k$, $x^{2}+y^{2}+z^{2}+k+1$
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 1
SP - 297
EP - 310
AB - We show that for any given integer $k$ there exist infinitely many consecutive square-free numbers of the type $x^{2}+y^{2}+z^{2}+k$, $x^{2}+y^{2}+z^{2}+k+1$. We also establish an asymptotic formula for $1\le x, y, z \le H$ such that $x^{2}+y^{2}+z^{2}+k$, $x^{2}+y^{2}+z^{2}+k+1$ are square-free. The method we used in this paper is due to Tolev.
LA - eng
KW - square-free number; Salié sum; Gauss sum
UR - http://eudml.org/doc/299442
ER -

References

top
  1. Carlitz, L., 10.1093/qmath/os-3.1.273, Q. J. Math., Oxf. Ser. 3 (1932), 273-290. (1932) Zbl0006.10401DOI10.1093/qmath/os-3.1.273
  2. Dimitrov, S., 10.4064/aa190118-25-7, Acta Arith. 194 (2020), 281-294. (2020) Zbl1469.11263MR4096105DOI10.4064/aa190118-25-7
  3. Dimitrov, S., 10.21136/CMJ.2021.0165-20, Czech. Math. J. 71 (2021), 991-1009. (2021) Zbl07442468MR4339105DOI10.21136/CMJ.2021.0165-20
  4. Estermann, T., 10.1112/plms/s3-12.1.425, Proc. Lond. Math. Soc., III. Ser. 12 (1962), 425-444. (1962) Zbl0105.03606MR0137677DOI10.1112/plms/s3-12.1.425
  5. Heath-Brown, D. R., 10.1007/BF01475576, Math. Ann. 266 (1984), 251-259. (1984) Zbl0514.10038MR0730168DOI10.1007/BF01475576
  6. Louvel, B., 10.1007/s00605-011-0366-5, Monatsh. Math. 168 (2012), 523-543. (2012) Zbl1314.11050MR2993962DOI10.1007/s00605-011-0366-5
  7. Reuss, T., Pairs of k -free numbers, consecutive square-full numbers, Available at https://arxiv.org/abs/1212.3150v2 (2012), 28 pages. (2012) 
  8. Tolev, D. I., 10.1007/s00605-010-0246-4, Monatsh. Math. 165 (2012), 557-567. (2012) Zbl1297.11118MR2891268DOI10.1007/s00605-010-0246-4
  9. Zhou, G.-L., Ding, Y., 10.1016/j.jnt.2021.07.022, J. Number Theory 236 (2022), 308-322. (2022) Zbl07493027MR4395352DOI10.1016/j.jnt.2021.07.022

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.