Consecutive square-free values of the type ,
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 1, page 297-310
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topFeng, Ya-Fang. "Consecutive square-free values of the type $x^{2}+y^{2}+z^{2}+k$, $x^{2}+y^{2}+z^{2}+k+1$." Czechoslovak Mathematical Journal 73.1 (2023): 297-310. <http://eudml.org/doc/299442>.
@article{Feng2023,
abstract = {We show that for any given integer $k$ there exist infinitely many consecutive square-free numbers of the type $x^\{2\}+y^\{2\}+z^\{2\}+k$, $x^\{2\}+y^\{2\}+z^\{2\}+k+1$. We also establish an asymptotic formula for $1\le x, y, z \le H$ such that $x^\{2\}+y^\{2\}+z^\{2\}+k$, $x^\{2\}+y^\{2\}+z^\{2\}+k+1$ are square-free. The method we used in this paper is due to Tolev.},
author = {Feng, Ya-Fang},
journal = {Czechoslovak Mathematical Journal},
keywords = {square-free number; Salié sum; Gauss sum},
language = {eng},
number = {1},
pages = {297-310},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Consecutive square-free values of the type $x^\{2\}+y^\{2\}+z^\{2\}+k$, $x^\{2\}+y^\{2\}+z^\{2\}+k+1$},
url = {http://eudml.org/doc/299442},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Feng, Ya-Fang
TI - Consecutive square-free values of the type $x^{2}+y^{2}+z^{2}+k$, $x^{2}+y^{2}+z^{2}+k+1$
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 1
SP - 297
EP - 310
AB - We show that for any given integer $k$ there exist infinitely many consecutive square-free numbers of the type $x^{2}+y^{2}+z^{2}+k$, $x^{2}+y^{2}+z^{2}+k+1$. We also establish an asymptotic formula for $1\le x, y, z \le H$ such that $x^{2}+y^{2}+z^{2}+k$, $x^{2}+y^{2}+z^{2}+k+1$ are square-free. The method we used in this paper is due to Tolev.
LA - eng
KW - square-free number; Salié sum; Gauss sum
UR - http://eudml.org/doc/299442
ER -
References
top- Carlitz, L., 10.1093/qmath/os-3.1.273, Q. J. Math., Oxf. Ser. 3 (1932), 273-290. (1932) Zbl0006.10401DOI10.1093/qmath/os-3.1.273
- Dimitrov, S., 10.4064/aa190118-25-7, Acta Arith. 194 (2020), 281-294. (2020) Zbl1469.11263MR4096105DOI10.4064/aa190118-25-7
- Dimitrov, S., 10.21136/CMJ.2021.0165-20, Czech. Math. J. 71 (2021), 991-1009. (2021) Zbl07442468MR4339105DOI10.21136/CMJ.2021.0165-20
- Estermann, T., 10.1112/plms/s3-12.1.425, Proc. Lond. Math. Soc., III. Ser. 12 (1962), 425-444. (1962) Zbl0105.03606MR0137677DOI10.1112/plms/s3-12.1.425
- Heath-Brown, D. R., 10.1007/BF01475576, Math. Ann. 266 (1984), 251-259. (1984) Zbl0514.10038MR0730168DOI10.1007/BF01475576
- Louvel, B., 10.1007/s00605-011-0366-5, Monatsh. Math. 168 (2012), 523-543. (2012) Zbl1314.11050MR2993962DOI10.1007/s00605-011-0366-5
- Reuss, T., Pairs of -free numbers, consecutive square-full numbers, Available at https://arxiv.org/abs/1212.3150v2 (2012), 28 pages. (2012)
- Tolev, D. I., 10.1007/s00605-010-0246-4, Monatsh. Math. 165 (2012), 557-567. (2012) Zbl1297.11118MR2891268DOI10.1007/s00605-010-0246-4
- Zhou, G.-L., Ding, Y., 10.1016/j.jnt.2021.07.022, J. Number Theory 236 (2022), 308-322. (2022) Zbl07493027MR4395352DOI10.1016/j.jnt.2021.07.022
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.