Neural network-based fault diagnosis and fault-tolerant control for nonlinear systems with output measurement noise

Yanjun Shen; Chen Ma; Chenhao Zhao; Zebin Wu

Kybernetika (2024)

  • Issue: 2, page 244-270
  • ISSN: 0023-5954

Abstract

top
In this article, the problems of fault diagnosis (FD) and fault-tolerant control (FTC) are investigated for a class of nonlinear systems with output measurement noise. Due to the influence of measurement noise in the output sensor, the output observation error cannot be accurately obtained, which causes obstacles to the accuracy of FD. To address this issue, an output filter and disturbance estimator are constructed to decrease the negative effects of measurement noise and observer gain disturbances, and a novel non-fragile neural observer is designed to estimate the unknown states. A new evaluation function is also introduced to detect faults. Then, a novel neural FTC controller is proposed in the presence of faults, to ensure that all the closed-loop system signals are semiglobally uniformly ultimately bounded (SGUUB). The effectiveness of the proposed methodology is verified via numerical simulation of a one-link robot system.

How to cite

top

Shen, Yanjun, et al. "Neural network-based fault diagnosis and fault-tolerant control for nonlinear systems with output measurement noise." Kybernetika (2024): 244-270. <http://eudml.org/doc/299443>.

@article{Shen2024,
abstract = {In this article, the problems of fault diagnosis (FD) and fault-tolerant control (FTC) are investigated for a class of nonlinear systems with output measurement noise. Due to the influence of measurement noise in the output sensor, the output observation error cannot be accurately obtained, which causes obstacles to the accuracy of FD. To address this issue, an output filter and disturbance estimator are constructed to decrease the negative effects of measurement noise and observer gain disturbances, and a novel non-fragile neural observer is designed to estimate the unknown states. A new evaluation function is also introduced to detect faults. Then, a novel neural FTC controller is proposed in the presence of faults, to ensure that all the closed-loop system signals are semiglobally uniformly ultimately bounded (SGUUB). The effectiveness of the proposed methodology is verified via numerical simulation of a one-link robot system.},
author = {Shen, Yanjun, Ma, Chen, Zhao, Chenhao, Wu, Zebin},
journal = {Kybernetika},
keywords = {fault diagnosis; fault-tolerant control; output measurement noise; non-fragile; output filter},
language = {eng},
number = {2},
pages = {244-270},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Neural network-based fault diagnosis and fault-tolerant control for nonlinear systems with output measurement noise},
url = {http://eudml.org/doc/299443},
year = {2024},
}

TY - JOUR
AU - Shen, Yanjun
AU - Ma, Chen
AU - Zhao, Chenhao
AU - Wu, Zebin
TI - Neural network-based fault diagnosis and fault-tolerant control for nonlinear systems with output measurement noise
JO - Kybernetika
PY - 2024
PB - Institute of Information Theory and Automation AS CR
IS - 2
SP - 244
EP - 270
AB - In this article, the problems of fault diagnosis (FD) and fault-tolerant control (FTC) are investigated for a class of nonlinear systems with output measurement noise. Due to the influence of measurement noise in the output sensor, the output observation error cannot be accurately obtained, which causes obstacles to the accuracy of FD. To address this issue, an output filter and disturbance estimator are constructed to decrease the negative effects of measurement noise and observer gain disturbances, and a novel non-fragile neural observer is designed to estimate the unknown states. A new evaluation function is also introduced to detect faults. Then, a novel neural FTC controller is proposed in the presence of faults, to ensure that all the closed-loop system signals are semiglobally uniformly ultimately bounded (SGUUB). The effectiveness of the proposed methodology is verified via numerical simulation of a one-link robot system.
LA - eng
KW - fault diagnosis; fault-tolerant control; output measurement noise; non-fragile; output filter
UR - http://eudml.org/doc/299443
ER -

References

top
  1. Astolfi, D., Zaccarian, L., Jungers, M., , Systems Control Lett. 148, (2021). MR4201528DOI
  2. Chadli, M., Abdo, A., Ding, S. X., , Automatica 49 (2013), 1996-2005. MR3063055DOI
  3. Chang, X., Yang, G., , IEEE Trans. Signal Process. 59 (2010), 1528-1538. MR2807742DOI
  4. Chen, Jianliang, Zhang, Weidong, Cao, Yongyan, Chu, Hongjun, , IEEE Transactions on Systems, Man, and Cybernetics: Systems 47 (2016), 1336-1347. DOI
  5. Cui, D., Niu, B., Wang, H., Yang, D., , Taylor and Francis 50 (2019), 2673-2686. MR4028330DOI
  6. Cui, D., Ahn, Ch. K., Xiang, Z., , IEEE Trans. Fuzzy Systems (2023). DOI
  7. Cui, D., Chadli, M., Xiang, Z., , IEEE Trans. Fuzzy Systems (2023). DOI
  8. Gong, J., Jiang, B., Shen, Q. S., , IEEE Trans. Industr. Inform. 38 (2020), 4173-4190. DOI
  9. Guo, H., Xu, J., Chen, Y., , IEEE Transa. Industr. Electronics 62 (2015), 7309-7321. DOI
  10. He, X., Wang, Z., Qin, L., Zhou, D., , IEEE Trans. Control Systems Technol. 24 (2016), 2150-2157. MR3526061DOI
  11. Jia, F., He, X., , IEEE Trans. Automat. Sci. Engrg. (2023), 1-13. DOI
  12. Keliris, Ch., Polycarpou, M. M., Parisini, T., , IEEE Trans. Neural Networks Learning Systems 28 (2016), 988-1004. DOI
  13. Kumar, S. V., Raja, R., Anthoni, S. M., Cao, J., Tu, Z., , Applied Math. Comput. 321 (2018), 483-497. MR3732392DOI
  14. M.-S, Koo, Choi, H.-L., , Int. J. Systems Sci. 52 (2021), 2034-2047. MR4286478DOI
  15. Li, Y., Zhang, J., Tong, S., , IEEE Trans. Industr. Inform. 18 (2021), 6026-6037. DOI
  16. Li, X. X., Zhu, F., Zak, Chakrabarty A., , IEEE Trans. Fuzzy Systems 24 (2016), 1679-1689. DOI
  17. Liu, Z., Chen, C., Zhang, Y., Chen, C. L. P., , IEEE Trans. Cybernet. 45 (2014), 507-518. DOI
  18. Liu, G., Park, J. H., Xu, S., Zhuang, G., , Nonlinear Analysis: Hybrid Systems 32 (2019), 65-78. MR3880200DOI
  19. Liu, L., Wang, Z., Zhang, H., , IEEE Trans. Automat. Sci. Engrg. 514 (2016), 299-313. DOI
  20. Liu, L., Wang, Z., Zhang, H., , Neurocomputing 152 (2015), 209-221. DOI
  21. Long, L., Zhao, J., , IEEE Trans. Neural Networks Learning Systems 26 (2014), 1350-1362. MR3479905DOI
  22. Lu, J., Luo, F., Wang, Y., Hou, M., Guo, H., , IEEE Access 9 (2021), 91148-91159. DOI
  23. Ma, H. J., Yang, G., , J. Intell. Fuzzy Systems 6 (2020), 2292-2307. MR3052346DOI
  24. Paoli, A., Sartini, M., Lafortune, S., , Automatica 47 (2011), 639-649. MR2878325DOI
  25. Sakthivel, R., Kanagaraj, R., Wang, C., Selvara, , Applied Mathematical Modelling 37 (2013), 72-81. DOI
  26. Sakthivel, R., Kanagaraj, R., Wang, C., Selvara, , IET Control Theory Appl. 13 (2019), 279-287. MR3932506DOI
  27. Sakthivel, R., Mohana, P. R., Wang, Ch., Dhanalakshmi, P., , J. Comput. Nonlinear Dynamics 14 (2019). DOI
  28. Schuh, M., Zgorzelski, M., Lunze, J., , Control Engrg. Practice 43 (2015), 1-11. DOI
  29. Shen, Q., Jiang, B., Shi, P., Lim, Ch., , IEEE Trans. Cybernet. 44 (2014), 2190-2201. DOI
  30. Shen, Y., Wang, D., Fang, Z., , Kybernetika 58 (2022), 522-546. MR4521854DOI
  31. Tang, L., Ma, D., Zhao, J., , IEEE Trans. Systems, Man, Cybernet.: Systems 50 (2018), 4270-4282. MR4182412DOI
  32. Wang, X., Niu, B., Zhao, P., Song, X., , Int. J. Adaptive Control Signal Process. 35 (2021), 532-548. MR4246634DOI
  33. Wang, Y., Song, Y., Lewis, F. L., , IEEE Trans. Industr. Electronics 62 (2015), 3978-3988. DOI
  34. Xiang, Z., Wang, R., Jiang, B., , Circuits Systems Signal Process. 30 (2011), 73-87. MR2769375DOI
  35. Zebin, W., Yanjun, S., Fan, Z., Chenhao, Z., , J. Franklin Inst. (2024), 0016-0032. MR4711080DOI
  36. Zeng, W., Wang, Q., Liu, F., Wang, Y., , ISA Trans. 61 (2016), 337-347. DOI
  37. Zhao, Ch., Li, L., Shen, Y., , J. Franklin Inst. 360 (2023), 13080-13107. MR4658487DOI
  38. Zhao, D., Polycarpou, M. M., , IEEE/CAA J. Automatica Sinica 9 (2021), 235-245. MR4339340DOI
  39. Zhao, X., Yang, H., R, H., Karimi, Zhu, Y., , IEEE Trans. Cybernet. 46 (2015), 1337-1349. DOI
  40. Zheng, Qunxian, Xu, Shengyuan, Zhang, Zhengqiang, , Applied Mathematics and Computation 386 (2019). MR4114862DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.