Neural network-based fault diagnosis and fault-tolerant control for nonlinear systems with output measurement noise
Yanjun Shen; Chen Ma; Chenhao Zhao; Zebin Wu
Kybernetika (2024)
- Issue: 2, page 244-270
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topShen, Yanjun, et al. "Neural network-based fault diagnosis and fault-tolerant control for nonlinear systems with output measurement noise." Kybernetika (2024): 244-270. <http://eudml.org/doc/299443>.
@article{Shen2024,
abstract = {In this article, the problems of fault diagnosis (FD) and fault-tolerant control (FTC) are investigated for a class of nonlinear systems with output measurement noise. Due to the influence of measurement noise in the output sensor, the output observation error cannot be accurately obtained, which causes obstacles to the accuracy of FD. To address this issue, an output filter and disturbance estimator are constructed to decrease the negative effects of measurement noise and observer gain disturbances, and a novel non-fragile neural observer is designed to estimate the unknown states. A new evaluation function is also introduced to detect faults. Then, a novel neural FTC controller is proposed in the presence of faults, to ensure that all the closed-loop system signals are semiglobally uniformly ultimately bounded (SGUUB). The effectiveness of the proposed methodology is verified via numerical simulation of a one-link robot system.},
author = {Shen, Yanjun, Ma, Chen, Zhao, Chenhao, Wu, Zebin},
journal = {Kybernetika},
keywords = {fault diagnosis; fault-tolerant control; output measurement noise; non-fragile; output filter},
language = {eng},
number = {2},
pages = {244-270},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Neural network-based fault diagnosis and fault-tolerant control for nonlinear systems with output measurement noise},
url = {http://eudml.org/doc/299443},
year = {2024},
}
TY - JOUR
AU - Shen, Yanjun
AU - Ma, Chen
AU - Zhao, Chenhao
AU - Wu, Zebin
TI - Neural network-based fault diagnosis and fault-tolerant control for nonlinear systems with output measurement noise
JO - Kybernetika
PY - 2024
PB - Institute of Information Theory and Automation AS CR
IS - 2
SP - 244
EP - 270
AB - In this article, the problems of fault diagnosis (FD) and fault-tolerant control (FTC) are investigated for a class of nonlinear systems with output measurement noise. Due to the influence of measurement noise in the output sensor, the output observation error cannot be accurately obtained, which causes obstacles to the accuracy of FD. To address this issue, an output filter and disturbance estimator are constructed to decrease the negative effects of measurement noise and observer gain disturbances, and a novel non-fragile neural observer is designed to estimate the unknown states. A new evaluation function is also introduced to detect faults. Then, a novel neural FTC controller is proposed in the presence of faults, to ensure that all the closed-loop system signals are semiglobally uniformly ultimately bounded (SGUUB). The effectiveness of the proposed methodology is verified via numerical simulation of a one-link robot system.
LA - eng
KW - fault diagnosis; fault-tolerant control; output measurement noise; non-fragile; output filter
UR - http://eudml.org/doc/299443
ER -
References
top- Astolfi, D., Zaccarian, L., Jungers, M., , Systems Control Lett. 148, (2021). MR4201528DOI
- Chadli, M., Abdo, A., Ding, S. X., , Automatica 49 (2013), 1996-2005. MR3063055DOI
- Chang, X., Yang, G., , IEEE Trans. Signal Process. 59 (2010), 1528-1538. MR2807742DOI
- Chen, Jianliang, Zhang, Weidong, Cao, Yongyan, Chu, Hongjun, , IEEE Transactions on Systems, Man, and Cybernetics: Systems 47 (2016), 1336-1347. DOI
- Cui, D., Niu, B., Wang, H., Yang, D., , Taylor and Francis 50 (2019), 2673-2686. MR4028330DOI
- Cui, D., Ahn, Ch. K., Xiang, Z., , IEEE Trans. Fuzzy Systems (2023). DOI
- Cui, D., Chadli, M., Xiang, Z., , IEEE Trans. Fuzzy Systems (2023). DOI
- Gong, J., Jiang, B., Shen, Q. S., , IEEE Trans. Industr. Inform. 38 (2020), 4173-4190. DOI
- Guo, H., Xu, J., Chen, Y., , IEEE Transa. Industr. Electronics 62 (2015), 7309-7321. DOI
- He, X., Wang, Z., Qin, L., Zhou, D., , IEEE Trans. Control Systems Technol. 24 (2016), 2150-2157. MR3526061DOI
- Jia, F., He, X., , IEEE Trans. Automat. Sci. Engrg. (2023), 1-13. DOI
- Keliris, Ch., Polycarpou, M. M., Parisini, T., , IEEE Trans. Neural Networks Learning Systems 28 (2016), 988-1004. DOI
- Kumar, S. V., Raja, R., Anthoni, S. M., Cao, J., Tu, Z., , Applied Math. Comput. 321 (2018), 483-497. MR3732392DOI
- M.-S, Koo, Choi, H.-L., , Int. J. Systems Sci. 52 (2021), 2034-2047. MR4286478DOI
- Li, Y., Zhang, J., Tong, S., , IEEE Trans. Industr. Inform. 18 (2021), 6026-6037. DOI
- Li, X. X., Zhu, F., Zak, Chakrabarty A., , IEEE Trans. Fuzzy Systems 24 (2016), 1679-1689. DOI
- Liu, Z., Chen, C., Zhang, Y., Chen, C. L. P., , IEEE Trans. Cybernet. 45 (2014), 507-518. DOI
- Liu, G., Park, J. H., Xu, S., Zhuang, G., , Nonlinear Analysis: Hybrid Systems 32 (2019), 65-78. MR3880200DOI
- Liu, L., Wang, Z., Zhang, H., , IEEE Trans. Automat. Sci. Engrg. 514 (2016), 299-313. DOI
- Liu, L., Wang, Z., Zhang, H., , Neurocomputing 152 (2015), 209-221. DOI
- Long, L., Zhao, J., , IEEE Trans. Neural Networks Learning Systems 26 (2014), 1350-1362. MR3479905DOI
- Lu, J., Luo, F., Wang, Y., Hou, M., Guo, H., , IEEE Access 9 (2021), 91148-91159. DOI
- Ma, H. J., Yang, G., , J. Intell. Fuzzy Systems 6 (2020), 2292-2307. MR3052346DOI
- Paoli, A., Sartini, M., Lafortune, S., , Automatica 47 (2011), 639-649. MR2878325DOI
- Sakthivel, R., Kanagaraj, R., Wang, C., Selvara, , Applied Mathematical Modelling 37 (2013), 72-81. DOI
- Sakthivel, R., Kanagaraj, R., Wang, C., Selvara, , IET Control Theory Appl. 13 (2019), 279-287. MR3932506DOI
- Sakthivel, R., Mohana, P. R., Wang, Ch., Dhanalakshmi, P., , J. Comput. Nonlinear Dynamics 14 (2019). DOI
- Schuh, M., Zgorzelski, M., Lunze, J., , Control Engrg. Practice 43 (2015), 1-11. DOI
- Shen, Q., Jiang, B., Shi, P., Lim, Ch., , IEEE Trans. Cybernet. 44 (2014), 2190-2201. DOI
- Shen, Y., Wang, D., Fang, Z., , Kybernetika 58 (2022), 522-546. MR4521854DOI
- Tang, L., Ma, D., Zhao, J., , IEEE Trans. Systems, Man, Cybernet.: Systems 50 (2018), 4270-4282. MR4182412DOI
- Wang, X., Niu, B., Zhao, P., Song, X., , Int. J. Adaptive Control Signal Process. 35 (2021), 532-548. MR4246634DOI
- Wang, Y., Song, Y., Lewis, F. L., , IEEE Trans. Industr. Electronics 62 (2015), 3978-3988. DOI
- Xiang, Z., Wang, R., Jiang, B., , Circuits Systems Signal Process. 30 (2011), 73-87. MR2769375DOI
- Zebin, W., Yanjun, S., Fan, Z., Chenhao, Z., , J. Franklin Inst. (2024), 0016-0032. MR4711080DOI
- Zeng, W., Wang, Q., Liu, F., Wang, Y., , ISA Trans. 61 (2016), 337-347. DOI
- Zhao, Ch., Li, L., Shen, Y., , J. Franklin Inst. 360 (2023), 13080-13107. MR4658487DOI
- Zhao, D., Polycarpou, M. M., , IEEE/CAA J. Automatica Sinica 9 (2021), 235-245. MR4339340DOI
- Zhao, X., Yang, H., R, H., Karimi, Zhu, Y., , IEEE Trans. Cybernet. 46 (2015), 1337-1349. DOI
- Zheng, Qunxian, Xu, Shengyuan, Zhang, Zhengqiang, , Applied Mathematics and Computation 386 (2019). MR4114862DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.