Leader-following consensus for lower-triangular nonlinear multi-agent systems with unknown controller and measurement sensitivities

Yanjun Shen; Dawei Wang; Zifan Fang

Kybernetika (2022)

  • Volume: 58, Issue: 4, page 522-546
  • ISSN: 0023-5954

Abstract

top
In this paper, a novel consensus algorithm is presented to handle with the leader-following consensus problem for lower-triangular nonlinear MASs (multi-agent systems) with unknown controller and measurement sensitivities under a given undirected topology. As distinguished from the existing results, the proposed consensus algorithm can tolerate to a relative wide range of controller and measurement sensitivities. We present some important matrix inequalities, especially a class of matrix inequalities with multiplicative noises. Based on these results and a dual-domination gain method, the output consensus error with unknown measurement noises can be used to construct the compensator for each follower directly. Then, a new distributed output feedback control is designed to enable the MASs to reach consensus in the presence of large controller perturbations. In view of a Lyapunov function, sufficient conditions are presented to guarantee that the states of the leader and followers can achieve consensus asymptotically. In the end, the proposed consensus algorithm is tested and verified by an illustrative example.

How to cite

top

Shen, Yanjun, Wang, Dawei, and Fang, Zifan. "Leader-following consensus for lower-triangular nonlinear multi-agent systems with unknown controller and measurement sensitivities." Kybernetika 58.4 (2022): 522-546. <http://eudml.org/doc/299490>.

@article{Shen2022,
abstract = {In this paper, a novel consensus algorithm is presented to handle with the leader-following consensus problem for lower-triangular nonlinear MASs (multi-agent systems) with unknown controller and measurement sensitivities under a given undirected topology. As distinguished from the existing results, the proposed consensus algorithm can tolerate to a relative wide range of controller and measurement sensitivities. We present some important matrix inequalities, especially a class of matrix inequalities with multiplicative noises. Based on these results and a dual-domination gain method, the output consensus error with unknown measurement noises can be used to construct the compensator for each follower directly. Then, a new distributed output feedback control is designed to enable the MASs to reach consensus in the presence of large controller perturbations. In view of a Lyapunov function, sufficient conditions are presented to guarantee that the states of the leader and followers can achieve consensus asymptotically. In the end, the proposed consensus algorithm is tested and verified by an illustrative example.},
author = {Shen, Yanjun, Wang, Dawei, Fang, Zifan},
journal = {Kybernetika},
keywords = {consensus; lower-triangular; nonlinear multi-agent systems; measurement noises; controller sensitivity; output feedback},
language = {eng},
number = {4},
pages = {522-546},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Leader-following consensus for lower-triangular nonlinear multi-agent systems with unknown controller and measurement sensitivities},
url = {http://eudml.org/doc/299490},
volume = {58},
year = {2022},
}

TY - JOUR
AU - Shen, Yanjun
AU - Wang, Dawei
AU - Fang, Zifan
TI - Leader-following consensus for lower-triangular nonlinear multi-agent systems with unknown controller and measurement sensitivities
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 4
SP - 522
EP - 546
AB - In this paper, a novel consensus algorithm is presented to handle with the leader-following consensus problem for lower-triangular nonlinear MASs (multi-agent systems) with unknown controller and measurement sensitivities under a given undirected topology. As distinguished from the existing results, the proposed consensus algorithm can tolerate to a relative wide range of controller and measurement sensitivities. We present some important matrix inequalities, especially a class of matrix inequalities with multiplicative noises. Based on these results and a dual-domination gain method, the output consensus error with unknown measurement noises can be used to construct the compensator for each follower directly. Then, a new distributed output feedback control is designed to enable the MASs to reach consensus in the presence of large controller perturbations. In view of a Lyapunov function, sufficient conditions are presented to guarantee that the states of the leader and followers can achieve consensus asymptotically. In the end, the proposed consensus algorithm is tested and verified by an illustrative example.
LA - eng
KW - consensus; lower-triangular; nonlinear multi-agent systems; measurement noises; controller sensitivity; output feedback
UR - http://eudml.org/doc/299490
ER -

References

top
  1. Ali, M. S., Agalya, R., Shekher, V., Joo, Y. H., , Nonlinear Analysis: Hybrid Systems 36 (2020), 100830. MR4037732DOI
  2. Amini, A., Azarbahram, A., Sojoodi, M., , Nonlinear Dynamics 85 (2016), 3, 1865-1886. MR3520161DOI
  3. Bidram, A., Davoudi, A., Lewis, F. L., Guerrero, J. M., , IEEE Trans. Power Systems 28 (2013), 3, 3462-3470. MR3281448DOI
  4. Cai, H., Hu, G., Lewis, F. L., Davoudi, A., , IEEE Trans. Power Systems 31 (2016), 5, 4057-4067. DOI
  5. Chen, M., Jiang, B., Guo, W. W., , Int. J. Systems Science 47 (2016), 7, 1689-1699. MR3441621DOI
  6. Chen, C. C., Qian, C., Sun, Z. Y., Liang, Y. W., , IEEE Trans. Automat. Control 63 (2018), 7, 2212-2217. MR3820224DOI
  7. Chen, G., Song, Y. D., , J. Franklin Inst. 352 (2015), 10, 4045-4066. MR3391443DOI
  8. Chen, J., Zhang, W., Cao, Y. Y., Chu, H., , IEEE Trans. Systems Man Cybernet.: Systems 47 (2017), 7, 1336-1347. DOI
  9. Deng, C., Zhang, D., Feng, G., , Automatica 139 (2022), 110172. MR4383035DOI
  10. Du, H., Jia, R., , Nonlinear Dynamics 82 (2015), 3, 1483-1492. MR3412503DOI
  11. Fax, J. A., Murray, R. M., , IEEE Trans. Automat. Control 49 (2004), 9, 1465-1476. MR2086912DOI
  12. Guo, Z., Xue, H., Pan, Y., , Neurocomputing 458 (2021), 24-32. DOI
  13. Hua, C. C., Li, K., Guan, X. P., 10.1016/j.automatica.2019.02.022, Automatica 103 (2019), 480-489. MR3920859DOI10.1016/j.automatica.2019.02.022
  14. Hua, C. C., You, X., Guan, X. P., , Automatica 73 (2016), 138-144. MR3552070DOI
  15. Kaviarasan, B., Kwon, O. M., Park, M. J., Sakthivel, R., , Appl. Math. Comput. 392 (2021), 125704. MR4160492DOI
  16. Kaviarasan, B., Sakthivel, R., Li, Y., Zhao, D., Ren, Y., , Int. J. Machine Learning Cybernet. 11 (2020), 2, 325-337. MR3888378DOI
  17. Khalil, K. H., Nonlinear Systems., (Third edition.) Prentice-Hall, Upper Saddle River, NJ 2002. Zbl1194.93083
  18. Koo, M. S., Choi, H. L., , Int. J. Control Automat. Systems 18 (2020), 9, 2186-2194. DOI
  19. Krstic, M., Deng, H., Stabilization of Uncertain Nonlinear Systems., Springer, New York 1998. MR1639235
  20. Lei, H., Lin, W., , Automatica 42 (2006), 10, 1783-1789. Zbl1114.93057MR2249724DOI
  21. Lei, H., Lin, W., , Systems Control Lett. 56 (2007), 7-8, 529-537. Zbl1118.93026MR2332005DOI
  22. Li, K., Hua, C. C., You, X., Ahn, C. K., , Automatica 132 (2021), 109832. MR4295948DOI
  23. Li, K., Hua, C .C., You, X., Guan, X. P., , Automatica 111 (2020), 108669. MR4039383DOI
  24. Li, K., Hua, C. C., You, X., Guan, X. P., , IEEE Trans. Automat. Control 66 (2021), 7, 3303-3310. MR4284153DOI
  25. Li, H., Liu, Q., Feng, G., Zhang, X., , Automatica 126 (2021), 109444. MR4212890DOI
  26. Li, C., Tong, S., Wang, W., , Inform. Sci. 181 (2011), 11, 2405-2421. MR2781794DOI
  27. Li, W., Yao, X., Krstic, M., , Automatica 120 (2020), 109112. MR4118791DOI
  28. Liu, C., Yue, X., Yang, Z., , Aerospace Sci. Technol. 118 (2021), 107053. DOI
  29. Ma, H., Wang, Z., Wang, D., Liu, D., Yan, P., Wei, Q., , IEEE Trans. Systems Man Cybernet.: Systems 46 (2016), 6, 750-758. MR0697005DOI
  30. Ni, W., Cheng, D., , Systems Control Lett. 59 (2010), 3-4, 209-217. MR2642259DOI
  31. Pandey, S. K., Mohanty, S. R., Kishor, N., , Renewable Sustainable Energy Rev. 25 (2013), 318-334. DOI
  32. Qian, C., Lin, W., , IEEE Trans. Automat. Control 47 (2002), 10, 1710-1715. MR1929946DOI
  33. Ren, W., Sorensen, N., , Robotics Autonomous Syst. 56 (2008), 4, 324-333. DOI
  34. Rigatos, G., Siano, P., Zervos, N., , IEEE Trans. Industr. Electronics 61 (2014), 11, 6369-6382. DOI
  35. Sakthivel, R., Parivallal, A., Tuan, N. H., Manickavalli, S., , Int. J. Adaptive Control Signal Process. 35 (2021), 6, 1039-1061. MR4273524DOI
  36. Sun, Z. Y., Xing, J. W., Meng, Q., , Nonlinear Dynamics 100 (2020), 2, 1309-1325. DOI
  37. Wang, X. H., Ji, H. B., , Int. J. Control Automat. Systems 10 (2012), 1, 27-35. DOI
  38. Wang, W., Wen, C., Huang, J., , Automatica 77 (2017), 133-142. MR3605772DOI
  39. Xu, R., Wang, X., Zhou, Y., , Nonlinear Dynamics 107 (2022), 3, 2345-2362. DOI
  40. Yang, B., Lin, W., , IEEE Trans. Automat. Control 49 (2004), 7, 1069-1080. MR2071935DOI
  41. Yu, G., Shen, Y., , Neurocomputing 382 (2020), 21-31. DOI
  42. Yuan, Y., Wang, Z., Zhang, P., Dong, H., , IEEE Trans. Cybernet. 49 (2019), 7, 2605-2617. DOI
  43. Zhang, C., Chang, L., Zhang, X., , IEEE/CAA J. Automat. Sinica 1 (2014), 2, 210-217. DOI
  44. Zhang, D., Deng, C., Feng, G., , IEEE Trans. Automat. Control (2022), 1-8. DOI
  45. Zhang, J., Qi, D., Zhao, G., , Neurocomputing 148 (2015), 278-287. DOI
  46. Zhang, J., Song, J., Li, J., Han, F., Zhang, H., , Int. J. Systems Sci. 52 (2021), 6, 1223-1236. MR4246968DOI
  47. Zhou, T., Liu, Q., Wang, W., , IEEE Access 9 (2021), 123430-123437. DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.