Low Mach number limit of a compressible Euler-Korteweg model

Yajie Wang; Jianwei Yang

Applications of Mathematics (2023)

  • Volume: 68, Issue: 1, page 99-108
  • ISSN: 0862-7940

Abstract

top
This article deals with the low Mach number limit of the compressible Euler-Korteweg equations. It is justified rigorously that solutions of the compressible Euler-Korteweg equations converge to those of the incompressible Euler equations as the Mach number tends to zero. Furthermore, the desired convergence rates are also obtained.

How to cite

top

Wang, Yajie, and Yang, Jianwei. "Low Mach number limit of a compressible Euler-Korteweg model." Applications of Mathematics 68.1 (2023): 99-108. <http://eudml.org/doc/299445>.

@article{Wang2023,
abstract = {This article deals with the low Mach number limit of the compressible Euler-Korteweg equations. It is justified rigorously that solutions of the compressible Euler-Korteweg equations converge to those of the incompressible Euler equations as the Mach number tends to zero. Furthermore, the desired convergence rates are also obtained.},
author = {Wang, Yajie, Yang, Jianwei},
journal = {Applications of Mathematics},
keywords = {Euler-Korteweg equation; compressible flow; low Mach number limit; modulated energy function},
language = {eng},
number = {1},
pages = {99-108},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Low Mach number limit of a compressible Euler-Korteweg model},
url = {http://eudml.org/doc/299445},
volume = {68},
year = {2023},
}

TY - JOUR
AU - Wang, Yajie
AU - Yang, Jianwei
TI - Low Mach number limit of a compressible Euler-Korteweg model
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 1
SP - 99
EP - 108
AB - This article deals with the low Mach number limit of the compressible Euler-Korteweg equations. It is justified rigorously that solutions of the compressible Euler-Korteweg equations converge to those of the incompressible Euler equations as the Mach number tends to zero. Furthermore, the desired convergence rates are also obtained.
LA - eng
KW - Euler-Korteweg equation; compressible flow; low Mach number limit; modulated energy function
UR - http://eudml.org/doc/299445
ER -

References

top
  1. Antonelli, P., Marcati, P., 10.1007/s00205-011-0454-7, Arch. Ration. Mech. Anal. 203 (2012), 499-527. (2012) Zbl1290.76165MR2885568DOI10.1007/s00205-011-0454-7
  2. Asano, K., 10.1007/BF03167815, Japan J. Appl. Math. 4 (1987), 455-488. (1987) Zbl0638.35012MR0925620DOI10.1007/BF03167815
  3. Audiard, C., 10.1137/11083174X, SIAM J. Math. Anal. 44 (2012), 3018-3040. (2012) Zbl1255.35179MR3023402DOI10.1137/11083174X
  4. Audiard, C., Haspot, B., 10.1007/s00220-017-2843-8, Commun. Math. Phys. 351 (2017), 201-247. (2017) Zbl1369.35047MR3613503DOI10.1007/s00220-017-2843-8
  5. Benzoni-Gavage, S., Danchin, R., Descombes, S., Well-posedness of one-dimensional Korteweg models, Electron. J. Differ. Equ. 2006 (2006), Article ID 59, 35 pages. (2006) Zbl1114.76058MR2226932
  6. Benzoni-Gavage, S., Danchin, R., Descombes, S., 10.1512/iumj.2007.56.2974, Indiana Univ. Math. J. 56 (2007), 1499-1579. (2007) Zbl1125.76060MR2354691DOI10.1512/iumj.2007.56.2974
  7. Brenier, Y., 10.1080/03605300008821529, Commun. Partial Differ. Equations 25 (2000), 737-754. (2000) Zbl0970.35110MR1748352DOI10.1080/03605300008821529
  8. Bresch, D., Desjardins, B., Ducomet, B., 10.1016/j.anihpc.2004.02.001, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22 (2005), 1-9. (2005) Zbl1062.35061MR2114408DOI10.1016/j.anihpc.2004.02.001
  9. Carles, R., Danchin, R., Saut, J.-C., 10.1088/0951-7715/25/10/2843, Nonlinearity 25 (2012), 2843-2873. (2012) Zbl1251.35142MR2979973DOI10.1088/0951-7715/25/10/2843
  10. Colombo, R. M., Guerra, G., Schleper, V., 10.1007/s00205-015-0904-8, Arch. Ration. Mech. Anal. 219 (2016), 701-718. (2016) Zbl1333.35169MR3437860DOI10.1007/s00205-015-0904-8
  11. Donatelli, D., Feireisl, E., Marcati, P., 10.1080/03605302.2014.972517, Commun. Partial Differ. Equations 40 (2015), 1314-1335. (2015) Zbl1326.35253MR3341206DOI10.1080/03605302.2014.972517
  12. Feireisl, E., Novotný, A., 10.1007/s00220-013-1691-4, Commun. Math. Phys. 321 (2013), 605-628. (2013) Zbl1291.35178MR3070031DOI10.1007/s00220-013-1691-4
  13. Hmidi, T., 10.1017/S1474748012000746, J. Inst. Math. Jussieu 12 (2013), 335-389. (2013) Zbl1280.35110MR3028789DOI10.1017/S1474748012000746
  14. Hoefer, M. A., Ablowitz, M. J., Coddington, I., Cornell, E. A., Engels, P., Schweikhard, V., 10.1103/PhysRevA.74.023623, Phys. Rev. A 74 (2006), Article ID 023623. (2006) DOI10.1103/PhysRevA.74.023623
  15. Iguchi, T., 10.1002/(SICI)1099-1476(19970725)20:11<945::AID-MMA894>3.0.CO;2-T, Math. Methods Appl. Sci. 20 (1997), 945-958. (1997) Zbl0884.35127MR1458527DOI10.1002/(SICI)1099-1476(19970725)20:11<945::AID-MMA894>3.0.CO;2-T
  16. Jamet, D., Torres, D., Brackbill, J. U., 10.1006/jcph.2002.7165, J. Comput. Phys. 182 (2002), 262-276. (2002) Zbl1058.76597DOI10.1006/jcph.2002.7165
  17. Jiang, S., Ju, Q., Li, F., 10.1137/15M102842X, SIAM J. Math. Anal. 48 (2016), 302-319. (2016) Zbl1338.35367MR3452249DOI10.1137/15M102842X
  18. Jüngel, A., Lin, C.-K., Wu, K.-C., 10.1007/s00220-014-1961-9, Commun. Math. Phys. 329 (2014), 725-744. (2014) Zbl1297.35169MR3210149DOI10.1007/s00220-014-1961-9
  19. Klainerman, S., Majda, A., 10.1002/cpa.3160340405, Commun. Pure Appl. Math. 34 (1981), 481-524. (1981) Zbl0476.76068MR0615627DOI10.1002/cpa.3160340405
  20. Lions, P.-L., Masmoudi, N., 10.1016/S0021-7824(98)80139-6, J. Math. Pures Appl., IX. Sér. 77 (1998), 585-627. (1998) Zbl0909.35101MR1628173DOI10.1016/S0021-7824(98)80139-6
  21. Liu, J., Schneider, J. B., Gollub, J. P., 10.1063/1.868782, Phys. Fluids 7 (1995), 55-67. (1995) MR1307112DOI10.1063/1.868782
  22. Noble, P., Vila, J.-P., 10.1137/130918009, SIAM J. Numer. Anal. 52 (2014), 2770-2791. (2014) Zbl1309.76142MR3280101DOI10.1137/130918009
  23. Ukai, S., 10.1215/kjm/1250520925, J. Math. Kyoto Univ. 26 (1986), 323-331. (1986) Zbl0618.76074MR0849223DOI10.1215/kjm/1250520925
  24. Wang, D., Yu, C., 10.1007/s00021-014-0185-2, J. Math. Fluid Mech. 16 (2014), 771-786. (2014) Zbl1309.35094MR3267548DOI10.1007/s00021-014-0185-2
  25. Yong, W.-A., 10.1090/S0002-9939-05-08077-9, Proc. Am. Math. Soc. 133 (2005), 3079-3085. (2005) Zbl1072.35563MR2159788DOI10.1090/S0002-9939-05-08077-9

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.