Low Mach number limit of a compressible Euler-Korteweg model
Applications of Mathematics (2023)
- Volume: 68, Issue: 1, page 99-108
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topWang, Yajie, and Yang, Jianwei. "Low Mach number limit of a compressible Euler-Korteweg model." Applications of Mathematics 68.1 (2023): 99-108. <http://eudml.org/doc/299445>.
@article{Wang2023,
abstract = {This article deals with the low Mach number limit of the compressible Euler-Korteweg equations. It is justified rigorously that solutions of the compressible Euler-Korteweg equations converge to those of the incompressible Euler equations as the Mach number tends to zero. Furthermore, the desired convergence rates are also obtained.},
author = {Wang, Yajie, Yang, Jianwei},
journal = {Applications of Mathematics},
keywords = {Euler-Korteweg equation; compressible flow; low Mach number limit; modulated energy function},
language = {eng},
number = {1},
pages = {99-108},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Low Mach number limit of a compressible Euler-Korteweg model},
url = {http://eudml.org/doc/299445},
volume = {68},
year = {2023},
}
TY - JOUR
AU - Wang, Yajie
AU - Yang, Jianwei
TI - Low Mach number limit of a compressible Euler-Korteweg model
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 1
SP - 99
EP - 108
AB - This article deals with the low Mach number limit of the compressible Euler-Korteweg equations. It is justified rigorously that solutions of the compressible Euler-Korteweg equations converge to those of the incompressible Euler equations as the Mach number tends to zero. Furthermore, the desired convergence rates are also obtained.
LA - eng
KW - Euler-Korteweg equation; compressible flow; low Mach number limit; modulated energy function
UR - http://eudml.org/doc/299445
ER -
References
top- Antonelli, P., Marcati, P., 10.1007/s00205-011-0454-7, Arch. Ration. Mech. Anal. 203 (2012), 499-527. (2012) Zbl1290.76165MR2885568DOI10.1007/s00205-011-0454-7
- Asano, K., 10.1007/BF03167815, Japan J. Appl. Math. 4 (1987), 455-488. (1987) Zbl0638.35012MR0925620DOI10.1007/BF03167815
- Audiard, C., 10.1137/11083174X, SIAM J. Math. Anal. 44 (2012), 3018-3040. (2012) Zbl1255.35179MR3023402DOI10.1137/11083174X
- Audiard, C., Haspot, B., 10.1007/s00220-017-2843-8, Commun. Math. Phys. 351 (2017), 201-247. (2017) Zbl1369.35047MR3613503DOI10.1007/s00220-017-2843-8
- Benzoni-Gavage, S., Danchin, R., Descombes, S., Well-posedness of one-dimensional Korteweg models, Electron. J. Differ. Equ. 2006 (2006), Article ID 59, 35 pages. (2006) Zbl1114.76058MR2226932
- Benzoni-Gavage, S., Danchin, R., Descombes, S., 10.1512/iumj.2007.56.2974, Indiana Univ. Math. J. 56 (2007), 1499-1579. (2007) Zbl1125.76060MR2354691DOI10.1512/iumj.2007.56.2974
- Brenier, Y., 10.1080/03605300008821529, Commun. Partial Differ. Equations 25 (2000), 737-754. (2000) Zbl0970.35110MR1748352DOI10.1080/03605300008821529
- Bresch, D., Desjardins, B., Ducomet, B., 10.1016/j.anihpc.2004.02.001, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22 (2005), 1-9. (2005) Zbl1062.35061MR2114408DOI10.1016/j.anihpc.2004.02.001
- Carles, R., Danchin, R., Saut, J.-C., 10.1088/0951-7715/25/10/2843, Nonlinearity 25 (2012), 2843-2873. (2012) Zbl1251.35142MR2979973DOI10.1088/0951-7715/25/10/2843
- Colombo, R. M., Guerra, G., Schleper, V., 10.1007/s00205-015-0904-8, Arch. Ration. Mech. Anal. 219 (2016), 701-718. (2016) Zbl1333.35169MR3437860DOI10.1007/s00205-015-0904-8
- Donatelli, D., Feireisl, E., Marcati, P., 10.1080/03605302.2014.972517, Commun. Partial Differ. Equations 40 (2015), 1314-1335. (2015) Zbl1326.35253MR3341206DOI10.1080/03605302.2014.972517
- Feireisl, E., Novotný, A., 10.1007/s00220-013-1691-4, Commun. Math. Phys. 321 (2013), 605-628. (2013) Zbl1291.35178MR3070031DOI10.1007/s00220-013-1691-4
- Hmidi, T., 10.1017/S1474748012000746, J. Inst. Math. Jussieu 12 (2013), 335-389. (2013) Zbl1280.35110MR3028789DOI10.1017/S1474748012000746
- Hoefer, M. A., Ablowitz, M. J., Coddington, I., Cornell, E. A., Engels, P., Schweikhard, V., 10.1103/PhysRevA.74.023623, Phys. Rev. A 74 (2006), Article ID 023623. (2006) DOI10.1103/PhysRevA.74.023623
- Iguchi, T., 10.1002/(SICI)1099-1476(19970725)20:11<945::AID-MMA894>3.0.CO;2-T, Math. Methods Appl. Sci. 20 (1997), 945-958. (1997) Zbl0884.35127MR1458527DOI10.1002/(SICI)1099-1476(19970725)20:11<945::AID-MMA894>3.0.CO;2-T
- Jamet, D., Torres, D., Brackbill, J. U., 10.1006/jcph.2002.7165, J. Comput. Phys. 182 (2002), 262-276. (2002) Zbl1058.76597DOI10.1006/jcph.2002.7165
- Jiang, S., Ju, Q., Li, F., 10.1137/15M102842X, SIAM J. Math. Anal. 48 (2016), 302-319. (2016) Zbl1338.35367MR3452249DOI10.1137/15M102842X
- Jüngel, A., Lin, C.-K., Wu, K.-C., 10.1007/s00220-014-1961-9, Commun. Math. Phys. 329 (2014), 725-744. (2014) Zbl1297.35169MR3210149DOI10.1007/s00220-014-1961-9
- Klainerman, S., Majda, A., 10.1002/cpa.3160340405, Commun. Pure Appl. Math. 34 (1981), 481-524. (1981) Zbl0476.76068MR0615627DOI10.1002/cpa.3160340405
- Lions, P.-L., Masmoudi, N., 10.1016/S0021-7824(98)80139-6, J. Math. Pures Appl., IX. Sér. 77 (1998), 585-627. (1998) Zbl0909.35101MR1628173DOI10.1016/S0021-7824(98)80139-6
- Liu, J., Schneider, J. B., Gollub, J. P., 10.1063/1.868782, Phys. Fluids 7 (1995), 55-67. (1995) MR1307112DOI10.1063/1.868782
- Noble, P., Vila, J.-P., 10.1137/130918009, SIAM J. Numer. Anal. 52 (2014), 2770-2791. (2014) Zbl1309.76142MR3280101DOI10.1137/130918009
- Ukai, S., 10.1215/kjm/1250520925, J. Math. Kyoto Univ. 26 (1986), 323-331. (1986) Zbl0618.76074MR0849223DOI10.1215/kjm/1250520925
- Wang, D., Yu, C., 10.1007/s00021-014-0185-2, J. Math. Fluid Mech. 16 (2014), 771-786. (2014) Zbl1309.35094MR3267548DOI10.1007/s00021-014-0185-2
- Yong, W.-A., 10.1090/S0002-9939-05-08077-9, Proc. Am. Math. Soc. 133 (2005), 3079-3085. (2005) Zbl1072.35563MR2159788DOI10.1090/S0002-9939-05-08077-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.