Quasi-neutral limit for a viscous capillary model of plasma

Didier Bresch; Benoît Desjardins; Bernard Ducomet

Annales de l'I.H.P. Analyse non linéaire (2005)

  • Volume: 22, Issue: 1, page 1-9
  • ISSN: 0294-1449

How to cite

top

Bresch, Didier, Desjardins, Benoît, and Ducomet, Bernard. "Quasi-neutral limit for a viscous capillary model of plasma." Annales de l'I.H.P. Analyse non linéaire 22.1 (2005): 1-9. <http://eudml.org/doc/78645>.

@article{Bresch2005,
author = {Bresch, Didier, Desjardins, Benoît, Ducomet, Bernard},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Navier-Stokes equations; Korteweg model; existence of global weak solutions; nonmagnetic plasma; charged particles; Maxwell-Boltzmann distribution},
language = {eng},
number = {1},
pages = {1-9},
publisher = {Elsevier},
title = {Quasi-neutral limit for a viscous capillary model of plasma},
url = {http://eudml.org/doc/78645},
volume = {22},
year = {2005},
}

TY - JOUR
AU - Bresch, Didier
AU - Desjardins, Benoît
AU - Ducomet, Bernard
TI - Quasi-neutral limit for a viscous capillary model of plasma
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 1
SP - 1
EP - 9
LA - eng
KW - Navier-Stokes equations; Korteweg model; existence of global weak solutions; nonmagnetic plasma; charged particles; Maxwell-Boltzmann distribution
UR - http://eudml.org/doc/78645
ER -

References

top
  1. [1] Bresch D., Desjardins B., Lin C.K., On some compressible fluid models: Korteweg, lubrication and shallow water systems, Comm. Partial Differential Equations28 (3–4) (2003) 1009-1037. Zbl1106.76436MR1978317
  2. [2] Bresch D., Desjardins B., Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophique model, Comm. Math. Phys.238 (1–2) (2003) 211-223. Zbl1037.76012MR1989675
  3. [3] Brezis H., Golse F., Sentis R., Analyse asymptotique de l'équation de Poisson couplée à la relation de Boltzmann : quasi-neutralité des plasmas, C. R. Acad. Sci. Paris Sér. 1321 (1995) 953-959. Zbl0839.76096MR1355860
  4. [4] Cordier S., Grenier E., Quasineutral limit of an Euler–Poisson system arising from plasma physics, Comm. Partial Differential Equations25 (2000) 1099-1113. Zbl0978.82086MR1759803
  5. [5] B. Ducomet, E. Feireisl, H. Petzeltová, I. Straškraba, Global in time weak solutions for compressible barotropic self gravitating fluids, DCDS, 2004, submitted for publication. Zbl1080.35068MR2073949
  6. [6] Jüngel A., Quasi-hydrodynamic Semiconductor Physics, Birkhäuser, Basel, 2001. MR1818867
  7. [7] Jüngel A., Peng Y.-J., A hierarchy of hydrodynamic models for plasmas, Ann. Inst. Henri Poincaré, Anal. Non Lin.17 (2000) 83-118. Zbl0956.35010MR1743432
  8. [8] Lions P.-L., Mathematical Topics in Fluid Dynamics, vol. 2, Compressible Models, Oxford Science Publication, Oxford, 1998. Zbl0908.76004MR1637634
  9. [9] Markowich P., Ringhofer C.A., Schmeiser C.A., Semiconductor Equations, Springer-Verlag, New York, 1990. Zbl0765.35001MR1063852
  10. [10] Y.-J. Peng, Y.G. Wang, Convergence of compressible Euler–Poisson equations to incompressible type Euler equations, 2003, submitted for publication. Zbl1072.35139

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.