Quasi-neutral limit for a viscous capillary model of plasma
Didier Bresch; Benoît Desjardins; Bernard Ducomet
Annales de l'I.H.P. Analyse non linéaire (2005)
- Volume: 22, Issue: 1, page 1-9
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBresch, Didier, Desjardins, Benoît, and Ducomet, Bernard. "Quasi-neutral limit for a viscous capillary model of plasma." Annales de l'I.H.P. Analyse non linéaire 22.1 (2005): 1-9. <http://eudml.org/doc/78645>.
@article{Bresch2005,
author = {Bresch, Didier, Desjardins, Benoît, Ducomet, Bernard},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Navier-Stokes equations; Korteweg model; existence of global weak solutions; nonmagnetic plasma; charged particles; Maxwell-Boltzmann distribution},
language = {eng},
number = {1},
pages = {1-9},
publisher = {Elsevier},
title = {Quasi-neutral limit for a viscous capillary model of plasma},
url = {http://eudml.org/doc/78645},
volume = {22},
year = {2005},
}
TY - JOUR
AU - Bresch, Didier
AU - Desjardins, Benoît
AU - Ducomet, Bernard
TI - Quasi-neutral limit for a viscous capillary model of plasma
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 1
SP - 1
EP - 9
LA - eng
KW - Navier-Stokes equations; Korteweg model; existence of global weak solutions; nonmagnetic plasma; charged particles; Maxwell-Boltzmann distribution
UR - http://eudml.org/doc/78645
ER -
References
top- [1] Bresch D., Desjardins B., Lin C.K., On some compressible fluid models: Korteweg, lubrication and shallow water systems, Comm. Partial Differential Equations28 (3–4) (2003) 1009-1037. Zbl1106.76436MR1978317
- [2] Bresch D., Desjardins B., Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophique model, Comm. Math. Phys.238 (1–2) (2003) 211-223. Zbl1037.76012MR1989675
- [3] Brezis H., Golse F., Sentis R., Analyse asymptotique de l'équation de Poisson couplée à la relation de Boltzmann : quasi-neutralité des plasmas, C. R. Acad. Sci. Paris Sér. 1321 (1995) 953-959. Zbl0839.76096MR1355860
- [4] Cordier S., Grenier E., Quasineutral limit of an Euler–Poisson system arising from plasma physics, Comm. Partial Differential Equations25 (2000) 1099-1113. Zbl0978.82086MR1759803
- [5] B. Ducomet, E. Feireisl, H. Petzeltová, I. Straškraba, Global in time weak solutions for compressible barotropic self gravitating fluids, DCDS, 2004, submitted for publication. Zbl1080.35068MR2073949
- [6] Jüngel A., Quasi-hydrodynamic Semiconductor Physics, Birkhäuser, Basel, 2001. MR1818867
- [7] Jüngel A., Peng Y.-J., A hierarchy of hydrodynamic models for plasmas, Ann. Inst. Henri Poincaré, Anal. Non Lin.17 (2000) 83-118. Zbl0956.35010MR1743432
- [8] Lions P.-L., Mathematical Topics in Fluid Dynamics, vol. 2, Compressible Models, Oxford Science Publication, Oxford, 1998. Zbl0908.76004MR1637634
- [9] Markowich P., Ringhofer C.A., Schmeiser C.A., Semiconductor Equations, Springer-Verlag, New York, 1990. Zbl0765.35001MR1063852
- [10] Y.-J. Peng, Y.G. Wang, Convergence of compressible Euler–Poisson equations to incompressible type Euler equations, 2003, submitted for publication. Zbl1072.35139
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.