Periodic solutions for a class of non-autonomous Hamiltonian systems with -Laplacian
Mathematica Bohemica (2024)
- Volume: 149, Issue: 2, page 185-208
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topWang, Zhiyong, and Qian, Zhengya. "Periodic solutions for a class of non-autonomous Hamiltonian systems with $p(t)$-Laplacian." Mathematica Bohemica 149.2 (2024): 185-208. <http://eudml.org/doc/299450>.
@article{Wang2024,
abstract = {We investigate the existence of infinitely many periodic solutions for the $p(t)$-Laplacian Hamiltonian systems. By virtue of several auxiliary functions, we obtain a series of new super-$p^+$ growth and asymptotic-$p^+$ growth conditions. Using the minimax methods in critical point theory, some multiplicity theorems are established, which unify and generalize some known results in the literature. Meanwhile, we also present an example to illustrate our main results are new even in the case $p(t)\equiv p=2$.},
author = {Wang, Zhiyong, Qian, Zhengya},
journal = {Mathematica Bohemica},
keywords = {auxiliary functions; $p(t)$-Laplacian systems; periodic solution; (C) condition; generalized mountain pass theorem},
language = {eng},
number = {2},
pages = {185-208},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Periodic solutions for a class of non-autonomous Hamiltonian systems with $p(t)$-Laplacian},
url = {http://eudml.org/doc/299450},
volume = {149},
year = {2024},
}
TY - JOUR
AU - Wang, Zhiyong
AU - Qian, Zhengya
TI - Periodic solutions for a class of non-autonomous Hamiltonian systems with $p(t)$-Laplacian
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 2
SP - 185
EP - 208
AB - We investigate the existence of infinitely many periodic solutions for the $p(t)$-Laplacian Hamiltonian systems. By virtue of several auxiliary functions, we obtain a series of new super-$p^+$ growth and asymptotic-$p^+$ growth conditions. Using the minimax methods in critical point theory, some multiplicity theorems are established, which unify and generalize some known results in the literature. Meanwhile, we also present an example to illustrate our main results are new even in the case $p(t)\equiv p=2$.
LA - eng
KW - auxiliary functions; $p(t)$-Laplacian systems; periodic solution; (C) condition; generalized mountain pass theorem
UR - http://eudml.org/doc/299450
ER -
References
top- Bartolo, P., Benci, V., Fortunato, D., 10.1016/0362-546X(83)90115-3, Nonlinear Anal., Theory Methods Appl. 7 (1983), 981-1012. (1983) Zbl0522.58012MR0713209DOI10.1016/0362-546X(83)90115-3
- Cerami, G., An existence criterion for the critical points on unbounded manifolds, Ist. Lombardo Accad. Sci. Lett., Rend., Sez. A 112 (1978), 332-336 Italian. (1978) Zbl0436.58006MR0581298
- Diening, L., Harjulehto, P., Hästö, P., Růžička, M., 10.1007/978-3-642-18363-8, Lecture Notes in Mathematics 2017. Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542DOI10.1007/978-3-642-18363-8
- Fan, X.-L., Fan, X., 10.1016/S0022-247X(02)00376-1, J. Math. Anal. Appl. 282 (2003), 453-464. (2003) Zbl1033.34023MR1989103DOI10.1016/S0022-247X(02)00376-1
- Faraci, F., Livrea, R., 10.1016/S0362-546X(03)00099-3, Nonlinear Anal., Theory Methods Appl., Ser. A 54 (2003), 417-429. (2003) Zbl1055.34082MR1978419DOI10.1016/S0362-546X(03)00099-3
- Fei, G., On periodic solutions of superquadratic Hamiltonian systems, Electron. J. Differ. Equ. 2002 (2002), Article ID 8, 12 pages. (2002) Zbl0999.37039MR1884977
- Jiang, Q., Tang, C.-L., 10.1016/j.jmaa.2006.05.064, J. Math. Anal. Appl. 328 (2007), 380-389. (2007) Zbl1118.34038MR2285556DOI10.1016/j.jmaa.2006.05.064
- Li, C., Ou, Z.-Q., Tang, C.-L., 10.1016/j.na.2010.10.030, Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 1596-1606. (2011) Zbl1218.37080MR2764361DOI10.1016/j.na.2010.10.030
- Lian, H., Wang, D., Bai, Z., Agarwal, R. P., 10.1186/s13661-014-0260-x, Bound. Value Probl. 2014 (2014), Article ID 260, 15 pages. (2014) Zbl1320.34065MR3294474DOI10.1186/s13661-014-0260-x
- Liu, C., Zhong, Y., 10.3934/era.2022083, Electron Res. Arch. 30 (2022), 1653-1667. (2022) MR4401210DOI10.3934/era.2022083
- Ma, S., Zhang, Y., 10.1016/j.jmaa.2008.10.027, J. Math. Anal. Appl. 351 (2009), 469-479. (2009) Zbl1153.37009MR2472958DOI10.1016/j.jmaa.2008.10.027
- Mawhin, J., Willem, M., 10.1007/978-1-4757-2061-7, Applied Mathematical Sciences 74. Springer, New York (1989). (1989) Zbl0676.58017MR0982267DOI10.1007/978-1-4757-2061-7
- Ou, Z.-Q., Tang, C.-L., 10.1016/j.na.2004.03.029, Nonlinear Anal., Theory Methods Appl., Ser. A 58 (2004), 245-258. (2004) Zbl1063.34033MR2073524DOI10.1016/j.na.2004.03.029
- Pipan, J., Schechter, M., 10.1016/j.jde.2014.03.016, J. Differ. Equations 257 (2014), 351-373. (2014) Zbl1331.37085MR3200374DOI10.1016/j.jde.2014.03.016
- Rabinowitz, P., 10.1002/cpa.3160330504, Commun. Pure Appl. Math. 33 (1980), 609-633. (1980) Zbl0425.34024MR0586414DOI10.1002/cpa.3160330504
- Rabinowitz, P., 10.1090/cbms/065, Regional Conference Series in Mathematics 65. AMS, Providence (1986). (1986) Zbl0609.58002MR0845785DOI10.1090/cbms/065
- Schechter, M., 10.1016/j.jde.2005.02.022, J. Differ. Equations 223 (2006), 290-302. (2006) Zbl1099.34042MR2214936DOI10.1016/j.jde.2005.02.022
- Tang, C.-L., Wu, X.-P., 10.1016/j.aml.2014.04.001, Appl. Math. Lett. 34 (2014), 65-71. (2014) Zbl1314.34090MR3212230DOI10.1016/j.aml.2014.04.001
- Tang, X. H., Jiang, J., 10.1016/j.camwa.2010.03.039, Comput. Math. Appl. 59 (2010), 3646-3655. (2010) Zbl1206.34059MR2651840DOI10.1016/j.camwa.2010.03.039
- Tao, Z.-L., Tang, C.-L., 10.1016/j.jmaa.2003.11.007, J. Math. Anal. Appl. 293 (2004), 435-445. (2004) Zbl1042.37047MR2053889DOI10.1016/j.jmaa.2003.11.007
- Tian, Y., Ge, W., 10.1016/j.na.2005.11.020, Nonlinear Anal., Theory Methods Appl., Ser. A 66 (2007), 192-203. (2007) Zbl1116.34034MR2271646DOI10.1016/j.na.2005.11.020
- Wang, X.-J., Yuan, R., 10.1016/j.na.2008.01.017, Nonlinear Anal., Theory Methods Appl., Ser. A 70 (2009), 866-880. (2009) Zbl1171.34030MR2468426DOI10.1016/j.na.2008.01.017
- Wang, Z., Zhang, J., 10.1016/j.crma.2018.04.014, C. R., Math., Acad. Sci. Paris 356 (2018), 597-612. (2018) Zbl1401.34052MR3806888DOI10.1016/j.crma.2018.04.014
- Wang, Z., Zhang, J., 10.1016/j.aml.2017.11.016, Appl. Math. Lett. 79 (2018), 43-50. (2018) Zbl1461.37067MR3748609DOI10.1016/j.aml.2017.11.016
- Xu, B., Tang, C.-L., 10.1016/j.jmaa.2006.11.051, J. Math. Anal. Appl. 333 (2007), 1228-1236. (2007) Zbl1154.34331MR2331727DOI10.1016/j.jmaa.2006.11.051
- Zhang, L., Tang, X. H., Chen, J., 10.1186/1687-2770-2011-33, Bound. Value Probl. 2011 (2011), Article ID 33, 15 pages. (2011) Zbl1275.34060MR2851529DOI10.1186/1687-2770-2011-33
- Zhang, Q., Tang, X. H., 10.36045/bbms/1331153413, Bull. Belg. Math. Soc. - Simon Stevin 19 (2012), 121-136. (2012) Zbl1246.34042MR2952800DOI10.36045/bbms/1331153413
- Zhang, S., 10.1186/s13661-016-0720-6, Bound. Value Probl. 2016 (2016), Article ID 211, 20 pages. (2016) Zbl1357.34080MR3575775DOI10.1186/s13661-016-0720-6
- Zhang, X., Tang, X., 10.1186/1687-2770-2013-139, Bound. Value Probl. 2013 (2013), Article ID 139, 25 pages. (2013) Zbl1297.34058MR3072825DOI10.1186/1687-2770-2013-139
- Zhang, Y., Ma, S., 10.3934/dcdsb.2009.12.251, Discrete Contin. Dyn. Syst., Ser. B 12 (2009), 251-260. (2009) Zbl1181.34054MR2505673DOI10.3934/dcdsb.2009.12.251
- Zhikov, V. V., 10.1070/IM1987v029n01ABEH000958, Math. USSR, Izv. 29 (1987), 33-66 translation from Izv. Akad. Nauk SSSR, Ser. Mat. 50 1986 675-710. (1987) Zbl0599.49031MR0864171DOI10.1070/IM1987v029n01ABEH000958
- Zou, W., 10.1016/S0362-546X(99)00324-7, Nonlinear Anal., Theory Methods Appl., Ser. A 44 (2001), 975-989. (2001) Zbl0997.37039MR1828377DOI10.1016/S0362-546X(99)00324-7
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.