Periodic solutions for a class of non-autonomous Hamiltonian systems with p ( t ) -Laplacian

Zhiyong Wang; Zhengya Qian

Mathematica Bohemica (2024)

  • Volume: 149, Issue: 2, page 185-208
  • ISSN: 0862-7959

Abstract

top
We investigate the existence of infinitely many periodic solutions for the p ( t ) -Laplacian Hamiltonian systems. By virtue of several auxiliary functions, we obtain a series of new super- p + growth and asymptotic- p + growth conditions. Using the minimax methods in critical point theory, some multiplicity theorems are established, which unify and generalize some known results in the literature. Meanwhile, we also present an example to illustrate our main results are new even in the case p ( t ) p = 2 .

How to cite

top

Wang, Zhiyong, and Qian, Zhengya. "Periodic solutions for a class of non-autonomous Hamiltonian systems with $p(t)$-Laplacian." Mathematica Bohemica 149.2 (2024): 185-208. <http://eudml.org/doc/299450>.

@article{Wang2024,
abstract = {We investigate the existence of infinitely many periodic solutions for the $p(t)$-Laplacian Hamiltonian systems. By virtue of several auxiliary functions, we obtain a series of new super-$p^+$ growth and asymptotic-$p^+$ growth conditions. Using the minimax methods in critical point theory, some multiplicity theorems are established, which unify and generalize some known results in the literature. Meanwhile, we also present an example to illustrate our main results are new even in the case $p(t)\equiv p=2$.},
author = {Wang, Zhiyong, Qian, Zhengya},
journal = {Mathematica Bohemica},
keywords = {auxiliary functions; $p(t)$-Laplacian systems; periodic solution; (C) condition; generalized mountain pass theorem},
language = {eng},
number = {2},
pages = {185-208},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Periodic solutions for a class of non-autonomous Hamiltonian systems with $p(t)$-Laplacian},
url = {http://eudml.org/doc/299450},
volume = {149},
year = {2024},
}

TY - JOUR
AU - Wang, Zhiyong
AU - Qian, Zhengya
TI - Periodic solutions for a class of non-autonomous Hamiltonian systems with $p(t)$-Laplacian
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 2
SP - 185
EP - 208
AB - We investigate the existence of infinitely many periodic solutions for the $p(t)$-Laplacian Hamiltonian systems. By virtue of several auxiliary functions, we obtain a series of new super-$p^+$ growth and asymptotic-$p^+$ growth conditions. Using the minimax methods in critical point theory, some multiplicity theorems are established, which unify and generalize some known results in the literature. Meanwhile, we also present an example to illustrate our main results are new even in the case $p(t)\equiv p=2$.
LA - eng
KW - auxiliary functions; $p(t)$-Laplacian systems; periodic solution; (C) condition; generalized mountain pass theorem
UR - http://eudml.org/doc/299450
ER -

References

top
  1. Bartolo, P., Benci, V., Fortunato, D., 10.1016/0362-546X(83)90115-3, Nonlinear Anal., Theory Methods Appl. 7 (1983), 981-1012. (1983) Zbl0522.58012MR0713209DOI10.1016/0362-546X(83)90115-3
  2. Cerami, G., An existence criterion for the critical points on unbounded manifolds, Ist. Lombardo Accad. Sci. Lett., Rend., Sez. A 112 (1978), 332-336 Italian. (1978) Zbl0436.58006MR0581298
  3. Diening, L., Harjulehto, P., Hästö, P., Růžička, M., 10.1007/978-3-642-18363-8, Lecture Notes in Mathematics 2017. Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542DOI10.1007/978-3-642-18363-8
  4. Fan, X.-L., Fan, X., 10.1016/S0022-247X(02)00376-1, J. Math. Anal. Appl. 282 (2003), 453-464. (2003) Zbl1033.34023MR1989103DOI10.1016/S0022-247X(02)00376-1
  5. Faraci, F., Livrea, R., 10.1016/S0362-546X(03)00099-3, Nonlinear Anal., Theory Methods Appl., Ser. A 54 (2003), 417-429. (2003) Zbl1055.34082MR1978419DOI10.1016/S0362-546X(03)00099-3
  6. Fei, G., On periodic solutions of superquadratic Hamiltonian systems, Electron. J. Differ. Equ. 2002 (2002), Article ID 8, 12 pages. (2002) Zbl0999.37039MR1884977
  7. Jiang, Q., Tang, C.-L., 10.1016/j.jmaa.2006.05.064, J. Math. Anal. Appl. 328 (2007), 380-389. (2007) Zbl1118.34038MR2285556DOI10.1016/j.jmaa.2006.05.064
  8. Li, C., Ou, Z.-Q., Tang, C.-L., 10.1016/j.na.2010.10.030, Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 1596-1606. (2011) Zbl1218.37080MR2764361DOI10.1016/j.na.2010.10.030
  9. Lian, H., Wang, D., Bai, Z., Agarwal, R. P., 10.1186/s13661-014-0260-x, Bound. Value Probl. 2014 (2014), Article ID 260, 15 pages. (2014) Zbl1320.34065MR3294474DOI10.1186/s13661-014-0260-x
  10. Liu, C., Zhong, Y., 10.3934/era.2022083, Electron Res. Arch. 30 (2022), 1653-1667. (2022) MR4401210DOI10.3934/era.2022083
  11. Ma, S., Zhang, Y., 10.1016/j.jmaa.2008.10.027, J. Math. Anal. Appl. 351 (2009), 469-479. (2009) Zbl1153.37009MR2472958DOI10.1016/j.jmaa.2008.10.027
  12. Mawhin, J., Willem, M., 10.1007/978-1-4757-2061-7, Applied Mathematical Sciences 74. Springer, New York (1989). (1989) Zbl0676.58017MR0982267DOI10.1007/978-1-4757-2061-7
  13. Ou, Z.-Q., Tang, C.-L., 10.1016/j.na.2004.03.029, Nonlinear Anal., Theory Methods Appl., Ser. A 58 (2004), 245-258. (2004) Zbl1063.34033MR2073524DOI10.1016/j.na.2004.03.029
  14. Pipan, J., Schechter, M., 10.1016/j.jde.2014.03.016, J. Differ. Equations 257 (2014), 351-373. (2014) Zbl1331.37085MR3200374DOI10.1016/j.jde.2014.03.016
  15. Rabinowitz, P., 10.1002/cpa.3160330504, Commun. Pure Appl. Math. 33 (1980), 609-633. (1980) Zbl0425.34024MR0586414DOI10.1002/cpa.3160330504
  16. Rabinowitz, P., 10.1090/cbms/065, Regional Conference Series in Mathematics 65. AMS, Providence (1986). (1986) Zbl0609.58002MR0845785DOI10.1090/cbms/065
  17. Schechter, M., 10.1016/j.jde.2005.02.022, J. Differ. Equations 223 (2006), 290-302. (2006) Zbl1099.34042MR2214936DOI10.1016/j.jde.2005.02.022
  18. Tang, C.-L., Wu, X.-P., 10.1016/j.aml.2014.04.001, Appl. Math. Lett. 34 (2014), 65-71. (2014) Zbl1314.34090MR3212230DOI10.1016/j.aml.2014.04.001
  19. Tang, X. H., Jiang, J., 10.1016/j.camwa.2010.03.039, Comput. Math. Appl. 59 (2010), 3646-3655. (2010) Zbl1206.34059MR2651840DOI10.1016/j.camwa.2010.03.039
  20. Tao, Z.-L., Tang, C.-L., 10.1016/j.jmaa.2003.11.007, J. Math. Anal. Appl. 293 (2004), 435-445. (2004) Zbl1042.37047MR2053889DOI10.1016/j.jmaa.2003.11.007
  21. Tian, Y., Ge, W., 10.1016/j.na.2005.11.020, Nonlinear Anal., Theory Methods Appl., Ser. A 66 (2007), 192-203. (2007) Zbl1116.34034MR2271646DOI10.1016/j.na.2005.11.020
  22. Wang, X.-J., Yuan, R., 10.1016/j.na.2008.01.017, Nonlinear Anal., Theory Methods Appl., Ser. A 70 (2009), 866-880. (2009) Zbl1171.34030MR2468426DOI10.1016/j.na.2008.01.017
  23. Wang, Z., Zhang, J., 10.1016/j.crma.2018.04.014, C. R., Math., Acad. Sci. Paris 356 (2018), 597-612. (2018) Zbl1401.34052MR3806888DOI10.1016/j.crma.2018.04.014
  24. Wang, Z., Zhang, J., 10.1016/j.aml.2017.11.016, Appl. Math. Lett. 79 (2018), 43-50. (2018) Zbl1461.37067MR3748609DOI10.1016/j.aml.2017.11.016
  25. Xu, B., Tang, C.-L., 10.1016/j.jmaa.2006.11.051, J. Math. Anal. Appl. 333 (2007), 1228-1236. (2007) Zbl1154.34331MR2331727DOI10.1016/j.jmaa.2006.11.051
  26. Zhang, L., Tang, X. H., Chen, J., 10.1186/1687-2770-2011-33, Bound. Value Probl. 2011 (2011), Article ID 33, 15 pages. (2011) Zbl1275.34060MR2851529DOI10.1186/1687-2770-2011-33
  27. Zhang, Q., Tang, X. H., 10.36045/bbms/1331153413, Bull. Belg. Math. Soc. - Simon Stevin 19 (2012), 121-136. (2012) Zbl1246.34042MR2952800DOI10.36045/bbms/1331153413
  28. Zhang, S., 10.1186/s13661-016-0720-6, Bound. Value Probl. 2016 (2016), Article ID 211, 20 pages. (2016) Zbl1357.34080MR3575775DOI10.1186/s13661-016-0720-6
  29. Zhang, X., Tang, X., 10.1186/1687-2770-2013-139, Bound. Value Probl. 2013 (2013), Article ID 139, 25 pages. (2013) Zbl1297.34058MR3072825DOI10.1186/1687-2770-2013-139
  30. Zhang, Y., Ma, S., 10.3934/dcdsb.2009.12.251, Discrete Contin. Dyn. Syst., Ser. B 12 (2009), 251-260. (2009) Zbl1181.34054MR2505673DOI10.3934/dcdsb.2009.12.251
  31. Zhikov, V. V., 10.1070/IM1987v029n01ABEH000958, Math. USSR, Izv. 29 (1987), 33-66 translation from Izv. Akad. Nauk SSSR, Ser. Mat. 50 1986 675-710. (1987) Zbl0599.49031MR0864171DOI10.1070/IM1987v029n01ABEH000958
  32. Zou, W., 10.1016/S0362-546X(99)00324-7, Nonlinear Anal., Theory Methods Appl., Ser. A 44 (2001), 975-989. (2001) Zbl0997.37039MR1828377DOI10.1016/S0362-546X(99)00324-7

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.