Metric trees in the Gromov--Hausdorff space

Yoshito Ishiki

Commentationes Mathematicae Universitatis Carolinae (2023)

  • Volume: 64, Issue: 1, page 73-82
  • ISSN: 0010-2628

Abstract

top
Using the wedge sum of metric spaces, for all compact metrizable spaces, we construct a topological embedding of the compact metrizable space into the set of all metric trees in the Gromov--Hausdorff space with finite prescribed values. As its application, we show that the set of all metric trees is path-connected and all its nonempty open subsets have infinite topological dimension.

How to cite

top

Ishiki, Yoshito. "Metric trees in the Gromov--Hausdorff space." Commentationes Mathematicae Universitatis Carolinae 64.1 (2023): 73-82. <http://eudml.org/doc/299454>.

@article{Ishiki2023,
abstract = {Using the wedge sum of metric spaces, for all compact metrizable spaces, we construct a topological embedding of the compact metrizable space into the set of all metric trees in the Gromov--Hausdorff space with finite prescribed values. As its application, we show that the set of all metric trees is path-connected and all its nonempty open subsets have infinite topological dimension.},
author = {Ishiki, Yoshito},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {metric tree; Gromov--Hausdorff distance},
language = {eng},
number = {1},
pages = {73-82},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Metric trees in the Gromov--Hausdorff space},
url = {http://eudml.org/doc/299454},
volume = {64},
year = {2023},
}

TY - JOUR
AU - Ishiki, Yoshito
TI - Metric trees in the Gromov--Hausdorff space
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 1
SP - 73
EP - 82
AB - Using the wedge sum of metric spaces, for all compact metrizable spaces, we construct a topological embedding of the compact metrizable space into the set of all metric trees in the Gromov--Hausdorff space with finite prescribed values. As its application, we show that the set of all metric trees is path-connected and all its nonempty open subsets have infinite topological dimension.
LA - eng
KW - metric tree; Gromov--Hausdorff distance
UR - http://eudml.org/doc/299454
ER -

References

top
  1. Berestovskiĭ V. N., 10.33048/smzh.2019.60.102, Sibirsk. Mat. Zh. 60 (2019), no. 1, 14–27 (Russian); translation in Sib. Math. J. 60 (2019), no. 1, 10–19. MR3919159DOI10.33048/smzh.2019.60.102
  2. Bridson M. R., Haefliger A., Metric Spaces of Non-positive Curvature, Grundlehren der mathematischen Wissenschaften, 319, Springer, Berlin, 1999. MR1744486
  3. Evans S. N., Probability and Real Trees, Lectures from the 35th Summer School on Probability Theory held in Saint-Flour, 2005, Lecture Notes in Mathematics, 1920, Springer, Berlin, 2008. MR2351587
  4. Herron D. A., 10.1007/s41478-016-0001-x, J. Anal. 24 (2016), no. 1, 1–38. MR3755806DOI10.1007/s41478-016-0001-x
  5. Ishiki Y., An interpolation of metrics and spaces of metrics, available at arXiv:2003.13227v1 [math.MG] (2020), 23 pages. 
  6. Ishiki Y., 10.1515/agms-2022-0136, Anal. Geom. Metr. Spaces 10 (2022), no. 1, 109–128. MR4462891DOI10.1515/agms-2022-0136
  7. Ishiki Y., 10.1016/j.topol.2022.108058, Topology Appl. 312 (2022), Paper No. 108058, 10 pages. MR4387932DOI10.1016/j.topol.2022.108058
  8. Ishiki Y., Fractal dimensions in the Gromov–Hausdorff space, available at arXiv: 2110.01881v5 [math.MG] (2022), 24 pages. MR4387932
  9. Jansen D., Notes on pointed Gromov–Hausdorff convergence, available at arXiv: 1703.09595v1 [math.MG] (2017), 48 pages. 
  10. Kelly J. L., General Topology, Graduate Texts in Mathematics, 27, Springer, New York, 1955. MR0370454
  11. Mémoli F., Wan Z., Characterization of Gromov-type geodesics, available at arXiv: 2105.05369v2 [math.MG] (2021), 58 pages. MR4568095
  12. Urysohn P., 10.4064/fm-9-1-119-121, Fund. Math. 9 (1927), no. 1, 119–121. DOI10.4064/fm-9-1-119-121

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.