Metric trees in the Gromov--Hausdorff space
Commentationes Mathematicae Universitatis Carolinae (2023)
- Volume: 64, Issue: 1, page 73-82
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topIshiki, Yoshito. "Metric trees in the Gromov--Hausdorff space." Commentationes Mathematicae Universitatis Carolinae 64.1 (2023): 73-82. <http://eudml.org/doc/299454>.
@article{Ishiki2023,
abstract = {Using the wedge sum of metric spaces, for all compact metrizable spaces, we construct a topological embedding of the compact metrizable space into the set of all metric trees in the Gromov--Hausdorff space with finite prescribed values. As its application, we show that the set of all metric trees is path-connected and all its nonempty open subsets have infinite topological dimension.},
author = {Ishiki, Yoshito},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {metric tree; Gromov--Hausdorff distance},
language = {eng},
number = {1},
pages = {73-82},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Metric trees in the Gromov--Hausdorff space},
url = {http://eudml.org/doc/299454},
volume = {64},
year = {2023},
}
TY - JOUR
AU - Ishiki, Yoshito
TI - Metric trees in the Gromov--Hausdorff space
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 1
SP - 73
EP - 82
AB - Using the wedge sum of metric spaces, for all compact metrizable spaces, we construct a topological embedding of the compact metrizable space into the set of all metric trees in the Gromov--Hausdorff space with finite prescribed values. As its application, we show that the set of all metric trees is path-connected and all its nonempty open subsets have infinite topological dimension.
LA - eng
KW - metric tree; Gromov--Hausdorff distance
UR - http://eudml.org/doc/299454
ER -
References
top- Berestovskiĭ V. N., 10.33048/smzh.2019.60.102, Sibirsk. Mat. Zh. 60 (2019), no. 1, 14–27 (Russian); translation in Sib. Math. J. 60 (2019), no. 1, 10–19. MR3919159DOI10.33048/smzh.2019.60.102
- Bridson M. R., Haefliger A., Metric Spaces of Non-positive Curvature, Grundlehren der mathematischen Wissenschaften, 319, Springer, Berlin, 1999. MR1744486
- Evans S. N., Probability and Real Trees, Lectures from the 35th Summer School on Probability Theory held in Saint-Flour, 2005, Lecture Notes in Mathematics, 1920, Springer, Berlin, 2008. MR2351587
- Herron D. A., 10.1007/s41478-016-0001-x, J. Anal. 24 (2016), no. 1, 1–38. MR3755806DOI10.1007/s41478-016-0001-x
- Ishiki Y., An interpolation of metrics and spaces of metrics, available at arXiv:2003.13227v1 [math.MG] (2020), 23 pages.
- Ishiki Y., 10.1515/agms-2022-0136, Anal. Geom. Metr. Spaces 10 (2022), no. 1, 109–128. MR4462891DOI10.1515/agms-2022-0136
- Ishiki Y., 10.1016/j.topol.2022.108058, Topology Appl. 312 (2022), Paper No. 108058, 10 pages. MR4387932DOI10.1016/j.topol.2022.108058
- Ishiki Y., Fractal dimensions in the Gromov–Hausdorff space, available at arXiv: 2110.01881v5 [math.MG] (2022), 24 pages. MR4387932
- Jansen D., Notes on pointed Gromov–Hausdorff convergence, available at arXiv: 1703.09595v1 [math.MG] (2017), 48 pages.
- Kelly J. L., General Topology, Graduate Texts in Mathematics, 27, Springer, New York, 1955. MR0370454
- Mémoli F., Wan Z., Characterization of Gromov-type geodesics, available at arXiv: 2105.05369v2 [math.MG] (2021), 58 pages. MR4568095
- Urysohn P., 10.4064/fm-9-1-119-121, Fund. Math. 9 (1927), no. 1, 119–121. DOI10.4064/fm-9-1-119-121
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.