Stabilization of partially linear composite stochastic systems via stochastic Luenberger observers
Kybernetika (2022)
- Volume: 58, Issue: 4, page 626-636
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topFlorchinger, Patrick. "Stabilization of partially linear composite stochastic systems via stochastic Luenberger observers." Kybernetika 58.4 (2022): 626-636. <http://eudml.org/doc/299465>.
@article{Florchinger2022,
abstract = {The present paper addresses the problem of the stabilization (in the sense of exponential stability in mean square) of partially linear composite stochastic systems by means of a stochastic observer. We propose sufficient conditions for the existence of a linear feedback law depending on an estimation given by a stochastic Luenberger observer which stabilizes the system at its equilibrium state. The novelty in our approach is that all the state variables but the output can be corrupted by noises whereas in the previous works at least one of the state variable should be unnoisy in order to design an observer.},
author = {Florchinger, Patrick},
journal = {Kybernetika},
keywords = {stochastic stability; composite stochastic system; feedback law; stochastic observer},
language = {eng},
number = {4},
pages = {626-636},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Stabilization of partially linear composite stochastic systems via stochastic Luenberger observers},
url = {http://eudml.org/doc/299465},
volume = {58},
year = {2022},
}
TY - JOUR
AU - Florchinger, Patrick
TI - Stabilization of partially linear composite stochastic systems via stochastic Luenberger observers
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 4
SP - 626
EP - 636
AB - The present paper addresses the problem of the stabilization (in the sense of exponential stability in mean square) of partially linear composite stochastic systems by means of a stochastic observer. We propose sufficient conditions for the existence of a linear feedback law depending on an estimation given by a stochastic Luenberger observer which stabilizes the system at its equilibrium state. The novelty in our approach is that all the state variables but the output can be corrupted by noises whereas in the previous works at least one of the state variable should be unnoisy in order to design an observer.
LA - eng
KW - stochastic stability; composite stochastic system; feedback law; stochastic observer
UR - http://eudml.org/doc/299465
ER -
References
top- I.Byrnes, C., Isidori, A., , Systems Control Lett. 12 (1989), 437-442. MR1005310DOI
- Chabour, R., Florchinger, P., , Appl. Math. Lett. 6 (1993), 6, 91-95. MR1348472DOI
- Dani, A., Chung, S. J., Hutchison, S., , IEEE Trans. Automat. Control 60 (2014), 3, 700-714. MR3318397DOI
- Ding, D., Han, Q. L., Wang, Z., Ge, X., , IEEE Trans. Systems Man Cybernet.: Systems 51 (2021), 10, 6466-6476. MR0697005DOI
- Ding, D., Wang, Z., Han, Q. L., , IEEE Trans. Cybernet. 50 (2020), 8, 3719-3730. DOI
- Ferfera, A., Hammami, M. A., Stabilization of composite nonlinear systems by a estimated state feedback law., In: Proc. IFAC Symposium on Nonlinear Control System Design (NOLCOS 95), Tahoe City 1995, pp. 697-701.
- Florchinger, P., Stabilization of partially linear stochastic systems via estimated state feedback law., In: Proc. IFAC Symposium on Nonlinear Control System Design (NOLCOS 95), Tahoe City 1995, pp. 753-758.
- Florchinger, P., , Int. J. Comput. Math. Appl. 33 (1997), 6, 127-135. MR1449219DOI
- Florchinger, P., Global stabilization of nonlinear composite stochastic systems., In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999, pp. 5036-5037. MR1449219
- Ghanes, M., Leon, J. De, Barbot, J., , IEEE Trans. Automat. Control 58 (2013), 1529-1534. MR3065135DOI
- Gauthier, J. P., Kupka, I., Deterministic Observation Theory and Applications., Cambridge University Press, Cambridge 2001. MR1862985
- Hu, X., , Systems Control Lett. 17 (1991), 465-473. MR1138946DOI
- Khasminskii, R. Z., , Sijthoff and Noordhoff, Alphen aan den Rijn 1980. Zbl1241.60002DOI
- Kokotovic, P. V., Sussmann, H. J., , Systems Control Lett. 13 (1989), 125-133. MR1014238DOI
- Kou, S. R., Elliott, D. L., Tarn, T. G., , Inform. Control 29 (1975), 204-216. MR0384227DOI
- Luenberger, D. G., , IEEE Trans. Military Electron. 8 (1964), 74-80. DOI
- Luenberger, D. G., , IEEE Trans. Automat. Control 16 (1971), 596-602. DOI
- Lin, Z., Saberi, A., Semi-global stabilization of partially linear composite systems via linear dynamic state feedback., In: Proc. 32nd IEEE Conference on Decision and Control, San Antonio 1993, pp. 2538-2543. MR1302561
- Saberi, A., Kokotovic, P. V., Sussmann, H. J., , SIAM J. Control Optim. 28 (1990), 6, 1491-1503. MR1075215DOI
- Sontag, E. D., , IEEE Trans. Automat. Control 34 (1989), 435-443. MR0987806DOI
- Tarn, T. J., Rasis, Y., , IEEE Trans. Automat. Control 21 (1976), 4, 441-448. MR0411794DOI
- J.Tsinias, , Math. Control Signals Systems 2 (1989), 343-357. MR1015672DOI
- Tsinias, J., , Systems Control Letters 17 (1991), 357-362. MR1136537DOI
- Wonham, W. M., , SIAM J. Control Optim. 6 (1968), 4, 681-697. MR0239161DOI
- Wu, J., Karimi, H., Shi, P., Observer-based stabilization of stochastic systems with limited communication., Math. Problems Engrg. 2012 (2012), Article ID 781542, 17 pp. MR2964997
- Zhang, X. M., Han, Q. L., Ge, X., Zhang, B. L., , IEEE Trans. Neural Networks Learning Systems (2021), 1-10. MR3453276DOI
- Zhang, X. M., Han, Q. L., Wang, J., , IEEE Trans. Neural Networks Learning Systems 29 (2018), 11, 5319-5329. MR3867847DOI
- Zhou, L., Xiao, X., Lu, G., , Asian J. Control 11 (2009), 688-693. MR2791315DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.