Stabilization of partially linear composite stochastic systems via stochastic Luenberger observers

Patrick Florchinger

Kybernetika (2022)

  • Volume: 58, Issue: 4, page 626-636
  • ISSN: 0023-5954

Abstract

top
The present paper addresses the problem of the stabilization (in the sense of exponential stability in mean square) of partially linear composite stochastic systems by means of a stochastic observer. We propose sufficient conditions for the existence of a linear feedback law depending on an estimation given by a stochastic Luenberger observer which stabilizes the system at its equilibrium state. The novelty in our approach is that all the state variables but the output can be corrupted by noises whereas in the previous works at least one of the state variable should be unnoisy in order to design an observer.

How to cite

top

Florchinger, Patrick. "Stabilization of partially linear composite stochastic systems via stochastic Luenberger observers." Kybernetika 58.4 (2022): 626-636. <http://eudml.org/doc/299465>.

@article{Florchinger2022,
abstract = {The present paper addresses the problem of the stabilization (in the sense of exponential stability in mean square) of partially linear composite stochastic systems by means of a stochastic observer. We propose sufficient conditions for the existence of a linear feedback law depending on an estimation given by a stochastic Luenberger observer which stabilizes the system at its equilibrium state. The novelty in our approach is that all the state variables but the output can be corrupted by noises whereas in the previous works at least one of the state variable should be unnoisy in order to design an observer.},
author = {Florchinger, Patrick},
journal = {Kybernetika},
keywords = {stochastic stability; composite stochastic system; feedback law; stochastic observer},
language = {eng},
number = {4},
pages = {626-636},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Stabilization of partially linear composite stochastic systems via stochastic Luenberger observers},
url = {http://eudml.org/doc/299465},
volume = {58},
year = {2022},
}

TY - JOUR
AU - Florchinger, Patrick
TI - Stabilization of partially linear composite stochastic systems via stochastic Luenberger observers
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 4
SP - 626
EP - 636
AB - The present paper addresses the problem of the stabilization (in the sense of exponential stability in mean square) of partially linear composite stochastic systems by means of a stochastic observer. We propose sufficient conditions for the existence of a linear feedback law depending on an estimation given by a stochastic Luenberger observer which stabilizes the system at its equilibrium state. The novelty in our approach is that all the state variables but the output can be corrupted by noises whereas in the previous works at least one of the state variable should be unnoisy in order to design an observer.
LA - eng
KW - stochastic stability; composite stochastic system; feedback law; stochastic observer
UR - http://eudml.org/doc/299465
ER -

References

top
  1. I.Byrnes, C., Isidori, A., , Systems Control Lett. 12 (1989), 437-442. MR1005310DOI
  2. Chabour, R., Florchinger, P., , Appl. Math. Lett. 6 (1993), 6, 91-95. MR1348472DOI
  3. Dani, A., Chung, S. J., Hutchison, S., , IEEE Trans. Automat. Control 60 (2014), 3, 700-714. MR3318397DOI
  4. Ding, D., Han, Q. L., Wang, Z., Ge, X., , IEEE Trans. Systems Man Cybernet.: Systems 51 (2021), 10, 6466-6476. MR0697005DOI
  5. Ding, D., Wang, Z., Han, Q. L., , IEEE Trans. Cybernet. 50 (2020), 8, 3719-3730. DOI
  6. Ferfera, A., Hammami, M. A., Stabilization of composite nonlinear systems by a estimated state feedback law., In: Proc. IFAC Symposium on Nonlinear Control System Design (NOLCOS 95), Tahoe City 1995, pp. 697-701. 
  7. Florchinger, P., Stabilization of partially linear stochastic systems via estimated state feedback law., In: Proc. IFAC Symposium on Nonlinear Control System Design (NOLCOS 95), Tahoe City 1995, pp. 753-758. 
  8. Florchinger, P., , Int. J. Comput. Math. Appl. 33 (1997), 6, 127-135. MR1449219DOI
  9. Florchinger, P., Global stabilization of nonlinear composite stochastic systems., In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999, pp. 5036-5037. MR1449219
  10. Ghanes, M., Leon, J. De, Barbot, J., , IEEE Trans. Automat. Control 58 (2013), 1529-1534. MR3065135DOI
  11. Gauthier, J. P., Kupka, I., Deterministic Observation Theory and Applications., Cambridge University Press, Cambridge 2001. MR1862985
  12. Hu, X., , Systems Control Lett. 17 (1991), 465-473. MR1138946DOI
  13. Khasminskii, R. Z., , Sijthoff and Noordhoff, Alphen aan den Rijn 1980. Zbl1241.60002DOI
  14. Kokotovic, P. V., Sussmann, H. J., , Systems Control Lett. 13 (1989), 125-133. MR1014238DOI
  15. Kou, S. R., Elliott, D. L., Tarn, T. G., , Inform. Control 29 (1975), 204-216. MR0384227DOI
  16. Luenberger, D. G., , IEEE Trans. Military Electron. 8 (1964), 74-80. DOI
  17. Luenberger, D. G., , IEEE Trans. Automat. Control 16 (1971), 596-602. DOI
  18. Lin, Z., Saberi, A., Semi-global stabilization of partially linear composite systems via linear dynamic state feedback., In: Proc. 32nd IEEE Conference on Decision and Control, San Antonio 1993, pp. 2538-2543. MR1302561
  19. Saberi, A., Kokotovic, P. V., Sussmann, H. J., , SIAM J. Control Optim. 28 (1990), 6, 1491-1503. MR1075215DOI
  20. Sontag, E. D., , IEEE Trans. Automat. Control 34 (1989), 435-443. MR0987806DOI
  21. Tarn, T. J., Rasis, Y., , IEEE Trans. Automat. Control 21 (1976), 4, 441-448. MR0411794DOI
  22. J.Tsinias, , Math. Control Signals Systems 2 (1989), 343-357. MR1015672DOI
  23. Tsinias, J., , Systems Control Letters 17 (1991), 357-362. MR1136537DOI
  24. Wonham, W. M., , SIAM J. Control Optim. 6 (1968), 4, 681-697. MR0239161DOI
  25. Wu, J., Karimi, H., Shi, P., Observer-based stabilization of stochastic systems with limited communication., Math. Problems Engrg. 2012 (2012), Article ID 781542, 17 pp. MR2964997
  26. Zhang, X. M., Han, Q. L., Ge, X., Zhang, B. L., , IEEE Trans. Neural Networks Learning Systems (2021), 1-10. MR3453276DOI
  27. Zhang, X. M., Han, Q. L., Wang, J., , IEEE Trans. Neural Networks Learning Systems 29 (2018), 11, 5319-5329. MR3867847DOI
  28. Zhou, L., Xiao, X., Lu, G., , Asian J. Control 11 (2009), 688-693. MR2791315DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.