Special modules for
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 4, page 1301-1317
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topCao, Liufeng, and Chen, Huixiang. "Special modules for $R({\rm PSL}(2,q))$." Czechoslovak Mathematical Journal 73.4 (2023): 1301-1317. <http://eudml.org/doc/299472>.
@article{Cao2023,
abstract = {Let $R$ be a fusion ring and $R_\mathbb \{C\}:=R\otimes _\mathbb \{Z\}\mathbb \{C\}$ be the corresponding fusion algebra. We first show that the algebra $R_\mathbb \{C\}$ has only one left (right, two-sided) cell and the corresponding left (right, two-sided) cell module. Then we prove that, up to isomorphism, $R_\mathbb \{C\}$ admits a unique special module, which is 1-dimensional and given by the Frobenius-Perron homomorphism FPdim. Moreover, as an example, we explicitly determine the special module of the interpolated fusion algebra $R(\{\rm PSL\}(2,q)):=r(\{\rm PSL\}(2,q))\otimes _\mathbb \{Z\}\mathbb \{C\}$ up to isomorphism, where $r(\{\rm PSL\}(2,q))$ is the interpolated fusion ring with even $q\ge 2$.},
author = {Cao, Liufeng, Chen, Huixiang},
journal = {Czechoslovak Mathematical Journal},
keywords = {Frobenius-Perron theorem; special module; fusion ring},
language = {eng},
number = {4},
pages = {1301-1317},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Special modules for $R(\{\rm PSL\}(2,q))$},
url = {http://eudml.org/doc/299472},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Cao, Liufeng
AU - Chen, Huixiang
TI - Special modules for $R({\rm PSL}(2,q))$
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 4
SP - 1301
EP - 1317
AB - Let $R$ be a fusion ring and $R_\mathbb {C}:=R\otimes _\mathbb {Z}\mathbb {C}$ be the corresponding fusion algebra. We first show that the algebra $R_\mathbb {C}$ has only one left (right, two-sided) cell and the corresponding left (right, two-sided) cell module. Then we prove that, up to isomorphism, $R_\mathbb {C}$ admits a unique special module, which is 1-dimensional and given by the Frobenius-Perron homomorphism FPdim. Moreover, as an example, we explicitly determine the special module of the interpolated fusion algebra $R({\rm PSL}(2,q)):=r({\rm PSL}(2,q))\otimes _\mathbb {Z}\mathbb {C}$ up to isomorphism, where $r({\rm PSL}(2,q))$ is the interpolated fusion ring with even $q\ge 2$.
LA - eng
KW - Frobenius-Perron theorem; special module; fusion ring
UR - http://eudml.org/doc/299472
ER -
References
top- Cao, L. F., Chen, H. X., Li, L. B., 10.1007/s10114-022-9046-8, Acta Math. Sin., Engl. Ser. 38 (2022), 1116-1132. (2022) Zbl07550664MR4444202DOI10.1007/s10114-022-9046-8
- Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V., 10.1090/surv/205, Mathematical Surveys and Monographs 205. AMS, Providence (2015). (2015) Zbl1365.18001MR3242743DOI10.1090/surv/205
- Frobenius, G., Über Matrizen aus positiven Elementen, Berl. Ber. 1908 (1908), 471-476 German 9999JFM99999 39.0213.03 . (1908)
- Frobenius, G., Über Matrizen aus positiven Elementen. II, Berl. Ber. German 1909 (1909), 514-518 9999JFM99999 40.0202.02. (1909)
- Gantmacher, F. R., The Theory of Matrices. Vol. 1, AMS Chelsea Publishing, Providence (1998). (1998) Zbl0927.15001MR1657129
- Kazhdan, D., Lusztig, G., 10.1007/BF01390031, Invent. Math. 53 (1979), 165-184. (1979) Zbl0499.20035MR0560412DOI10.1007/BF01390031
- Kildetoft, K., Mazorchuk, V., 10.4171/DM/555, Doc. Math. 21 (2016), 1171-1192. (2016) Zbl1369.16016MR3578210DOI10.4171/DM/555
- Kudryavtseva, G., Mazorchuk, V., 10.4171/PM/1956, Port. Math. (N.S.) 72 (2015), 47-80. (2015) Zbl1333.20070MR3323510DOI10.4171/PM/1956
- Lin, S., Yang, S., 10.21136/CMJ.2023.0254-22, Czech. Math. J. 73 (2023), 811-838. (2023) Zbl7729539MR4632859DOI10.21136/CMJ.2023.0254-22
- Liu, Z., Palcoux, S., Ren, Y., Interpolated family of non group-like simple integral fusion rings of Lie type, Available at https://arxiv.org/abs/2102.01663 (2021), 29 pages. (2021) MR4591939
- Lorenz, M., 10.1090/conm/537, Groups, Algebras and Applications Contemporary Mathematics 537. AMS, Providence (2011), 269-289. (2011) Zbl1254.16014MR2799106DOI10.1090/conm/537
- Lusztig, G., Leading coefficients of character values of Hecke algebras, Representations of Finite Groups Proceedings of Symposia in Pure Mathematics 47. AMS, Providence (1987), 235-262. (1987) Zbl0657.20037MR0933415
- Mazorchuk, V., Miemietz, V., 10.1112/S0010437X11005586, Compos. Math. 147 (2011), 1519-1545. (2011) Zbl1232.17015MR2834731DOI10.1112/S0010437X11005586
- Perron, O., 10.1007/BF01449896, Math. Ann. 64 (1907), 248-263 German 9999JFM99999 38.0202.01. (1907) MR1511438DOI10.1007/BF01449896
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.