Special modules for R ( PSL ( 2 , q ) )

Liufeng Cao; Huixiang Chen

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 4, page 1301-1317
  • ISSN: 0011-4642

Abstract

top
Let R be a fusion ring and R : = R be the corresponding fusion algebra. We first show that the algebra R has only one left (right, two-sided) cell and the corresponding left (right, two-sided) cell module. Then we prove that, up to isomorphism, R admits a unique special module, which is 1-dimensional and given by the Frobenius-Perron homomorphism FPdim. Moreover, as an example, we explicitly determine the special module of the interpolated fusion algebra R ( PSL ( 2 , q ) ) : = r ( PSL ( 2 , q ) ) up to isomorphism, where r ( PSL ( 2 , q ) ) is the interpolated fusion ring with even q 2 .

How to cite

top

Cao, Liufeng, and Chen, Huixiang. "Special modules for $R({\rm PSL}(2,q))$." Czechoslovak Mathematical Journal 73.4 (2023): 1301-1317. <http://eudml.org/doc/299472>.

@article{Cao2023,
abstract = {Let $R$ be a fusion ring and $R_\mathbb \{C\}:=R\otimes _\mathbb \{Z\}\mathbb \{C\}$ be the corresponding fusion algebra. We first show that the algebra $R_\mathbb \{C\}$ has only one left (right, two-sided) cell and the corresponding left (right, two-sided) cell module. Then we prove that, up to isomorphism, $R_\mathbb \{C\}$ admits a unique special module, which is 1-dimensional and given by the Frobenius-Perron homomorphism FPdim. Moreover, as an example, we explicitly determine the special module of the interpolated fusion algebra $R(\{\rm PSL\}(2,q)):=r(\{\rm PSL\}(2,q))\otimes _\mathbb \{Z\}\mathbb \{C\}$ up to isomorphism, where $r(\{\rm PSL\}(2,q))$ is the interpolated fusion ring with even $q\ge 2$.},
author = {Cao, Liufeng, Chen, Huixiang},
journal = {Czechoslovak Mathematical Journal},
keywords = {Frobenius-Perron theorem; special module; fusion ring},
language = {eng},
number = {4},
pages = {1301-1317},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Special modules for $R(\{\rm PSL\}(2,q))$},
url = {http://eudml.org/doc/299472},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Cao, Liufeng
AU - Chen, Huixiang
TI - Special modules for $R({\rm PSL}(2,q))$
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 4
SP - 1301
EP - 1317
AB - Let $R$ be a fusion ring and $R_\mathbb {C}:=R\otimes _\mathbb {Z}\mathbb {C}$ be the corresponding fusion algebra. We first show that the algebra $R_\mathbb {C}$ has only one left (right, two-sided) cell and the corresponding left (right, two-sided) cell module. Then we prove that, up to isomorphism, $R_\mathbb {C}$ admits a unique special module, which is 1-dimensional and given by the Frobenius-Perron homomorphism FPdim. Moreover, as an example, we explicitly determine the special module of the interpolated fusion algebra $R({\rm PSL}(2,q)):=r({\rm PSL}(2,q))\otimes _\mathbb {Z}\mathbb {C}$ up to isomorphism, where $r({\rm PSL}(2,q))$ is the interpolated fusion ring with even $q\ge 2$.
LA - eng
KW - Frobenius-Perron theorem; special module; fusion ring
UR - http://eudml.org/doc/299472
ER -

References

top
  1. Cao, L. F., Chen, H. X., Li, L. B., 10.1007/s10114-022-9046-8, Acta Math. Sin., Engl. Ser. 38 (2022), 1116-1132. (2022) Zbl07550664MR4444202DOI10.1007/s10114-022-9046-8
  2. Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V., 10.1090/surv/205, Mathematical Surveys and Monographs 205. AMS, Providence (2015). (2015) Zbl1365.18001MR3242743DOI10.1090/surv/205
  3. Frobenius, G., Über Matrizen aus positiven Elementen, Berl. Ber. 1908 (1908), 471-476 German 9999JFM99999 39.0213.03 . (1908) 
  4. Frobenius, G., Über Matrizen aus positiven Elementen. II, Berl. Ber. German 1909 (1909), 514-518 9999JFM99999 40.0202.02. (1909) 
  5. Gantmacher, F. R., The Theory of Matrices. Vol. 1, AMS Chelsea Publishing, Providence (1998). (1998) Zbl0927.15001MR1657129
  6. Kazhdan, D., Lusztig, G., 10.1007/BF01390031, Invent. Math. 53 (1979), 165-184. (1979) Zbl0499.20035MR0560412DOI10.1007/BF01390031
  7. Kildetoft, K., Mazorchuk, V., 10.4171/DM/555, Doc. Math. 21 (2016), 1171-1192. (2016) Zbl1369.16016MR3578210DOI10.4171/DM/555
  8. Kudryavtseva, G., Mazorchuk, V., 10.4171/PM/1956, Port. Math. (N.S.) 72 (2015), 47-80. (2015) Zbl1333.20070MR3323510DOI10.4171/PM/1956
  9. Lin, S., Yang, S., 10.21136/CMJ.2023.0254-22, Czech. Math. J. 73 (2023), 811-838. (2023) Zbl7729539MR4632859DOI10.21136/CMJ.2023.0254-22
  10. Liu, Z., Palcoux, S., Ren, Y., Interpolated family of non group-like simple integral fusion rings of Lie type, Available at https://arxiv.org/abs/2102.01663 (2021), 29 pages. (2021) MR4591939
  11. Lorenz, M., 10.1090/conm/537, Groups, Algebras and Applications Contemporary Mathematics 537. AMS, Providence (2011), 269-289. (2011) Zbl1254.16014MR2799106DOI10.1090/conm/537
  12. Lusztig, G., Leading coefficients of character values of Hecke algebras, Representations of Finite Groups Proceedings of Symposia in Pure Mathematics 47. AMS, Providence (1987), 235-262. (1987) Zbl0657.20037MR0933415
  13. Mazorchuk, V., Miemietz, V., 10.1112/S0010437X11005586, Compos. Math. 147 (2011), 1519-1545. (2011) Zbl1232.17015MR2834731DOI10.1112/S0010437X11005586
  14. Perron, O., 10.1007/BF01449896, Math. Ann. 64 (1907), 248-263 German 9999JFM99999 38.0202.01. (1907) MR1511438DOI10.1007/BF01449896

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.