Representations of a class of positively based algebras

Shiyu Lin; Shilin Yang

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 3, page 811-838
  • ISSN: 0011-4642

Abstract

top
We investigate the representation theory of the positively based algebra A m , d , which is a generalization of the noncommutative Green algebra of weak Hopf algebra corresponding to the generalized Taft algebra. It turns out that A m , d is of finite representative type if d 4 , of tame type if d = 5 , and of wild type if d 6 . In the case when d 4 , all indecomposable representations of A m , d are constructed. Furthermore, their right cell representations as well as left cell representations of A m , d are described.

How to cite

top

Lin, Shiyu, and Yang, Shilin. "Representations of a class of positively based algebras." Czechoslovak Mathematical Journal 73.3 (2023): 811-838. <http://eudml.org/doc/299120>.

@article{Lin2023,
abstract = {We investigate the representation theory of the positively based algebra $A_\{m,d\}$, which is a generalization of the noncommutative Green algebra of weak Hopf algebra corresponding to the generalized Taft algebra. It turns out that $A_\{m,d\}$ is of finite representative type if $d\le 4$, of tame type if $d=5$, and of wild type if $d\ge 6.$ In the case when $d\le 4$, all indecomposable representations of $A_\{m,d\}$ are constructed. Furthermore, their right cell representations as well as left cell representations of $A_\{m,d\}$ are described.},
author = {Lin, Shiyu, Yang, Shilin},
journal = {Czechoslovak Mathematical Journal},
keywords = {positively based algebra; indecomposable module; cell module},
language = {eng},
number = {3},
pages = {811-838},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Representations of a class of positively based algebras},
url = {http://eudml.org/doc/299120},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Lin, Shiyu
AU - Yang, Shilin
TI - Representations of a class of positively based algebras
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 811
EP - 838
AB - We investigate the representation theory of the positively based algebra $A_{m,d}$, which is a generalization of the noncommutative Green algebra of weak Hopf algebra corresponding to the generalized Taft algebra. It turns out that $A_{m,d}$ is of finite representative type if $d\le 4$, of tame type if $d=5$, and of wild type if $d\ge 6.$ In the case when $d\le 4$, all indecomposable representations of $A_{m,d}$ are constructed. Furthermore, their right cell representations as well as left cell representations of $A_{m,d}$ are described.
LA - eng
KW - positively based algebra; indecomposable module; cell module
UR - http://eudml.org/doc/299120
ER -

References

top
  1. Assem, I., Simson, D., Skowroński, A., 10.1017/CBO9780511614309, London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). (2006) Zbl1092.16001MR2197389DOI10.1017/CBO9780511614309
  2. Gel'fand, I. M., Ponomarev, V. A., Problems of linear algebra and classification of quadruples of subspaces in a finite-dimensional vector space, Hilbert Space Operators Operator Algebras Colloquia Math. Soc. János Bolyai 5. North-Holland, Amsterdam (1972), 163-237. (1972) Zbl0294.15002MR0357428
  3. Gunnlaugsdóttir, E., 10.1016/S0024-3795(02)00484-6, Linear Algebra Appl. 365 (2003), 183-199. (2003) Zbl1041.16027MR1987337DOI10.1016/S0024-3795(02)00484-6
  4. Kazhdan, D., Lusztig, G., 10.1007/BF01390031, Invent. Math. 53 (1979), 165-184. (1979) Zbl0499.20035MR0560412DOI10.1007/BF01390031
  5. Kildetoft, D., Mazorchuk, V., 10.4171/dm/555, Doc. Math. 21 (2016), 1171-1192. (2016) Zbl1369.16016MR3578210DOI10.4171/dm/555
  6. Kudryavtseva, G., Mazorchuk, V., 10.4171/PM/1956, Port. Math. (N.S.) 72 (2015), 47-80. (2015) Zbl1333.20070MR3323510DOI10.4171/PM/1956
  7. Li, F., 10.1006/jabr.1998.7491, J. Algebra 208 (1998), 72-100. (1998) Zbl0916.16020MR1643979DOI10.1006/jabr.1998.7491
  8. Li, L., Zhang, Y., 10.1090/conm/585/11618, Hopf Algebras and Tensor Categories Contemporary Mathematics 585. AMS, Providence (2013), 275-288. (2013) Zbl1309.19001MR3077243DOI10.1090/conm/585/11618
  9. Lusztig, G., 10.1007/BF01390002, Invent. Math. 43 (1977), 125-175. (1977) Zbl0372.20033MR0463275DOI10.1007/BF01390002
  10. Lusztig, G., 10.1016/1385-7258(79)90036-2, Indag. Math. 41 (1979), 323-335. (1979) Zbl0435.20021MR0546372DOI10.1016/1385-7258(79)90036-2
  11. Lusztig, G., 10.1016/S1385-7258(82)80013-9, Indag. Math. 44 (1982), 219-226. (1982) Zbl0511.20034MR0662657DOI10.1016/S1385-7258(82)80013-9
  12. Mazorchuk, V., Miemietz, V., 10.1112/S0010437X11005586, Compos. Math. 147 (2011), 1519-1545. (2011) Zbl1232.17015MR2834731DOI10.1112/S0010437X11005586
  13. Nazarova, L. A., 10.1070/IM1967v001n06ABEH000619, Math. USSR, Izv. 1 (1969), 1305-1323 translation from Izv. Akad. Nauk SSSR, Ser. Mat. 31 1967 1361-1378. (1969) Zbl0222.16028MR0223352DOI10.1070/IM1967v001n06ABEH000619
  14. Su, D., Yang, S., 10.1063/1.4986839, J. Math. Phys. 58 (2017), Article ID 091704, 24 pages. (2017) Zbl1375.81142MR3704599DOI10.1063/1.4986839
  15. Su, D., Yang, S., 10.1007/s10998-017-0221-0, Period. Math. Hung. 76 (2018), 229-242. (2018) Zbl1399.16085MR3805598DOI10.1007/s10998-017-0221-0
  16. Yang, S., 10.1142/S021949880400071X, J. Algebra Appl. 3 (2004), 91-104. (2004) Zbl1080.16043MR2047638DOI10.1142/S021949880400071X

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.