Representations of a class of positively based algebras
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 3, page 811-838
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLin, Shiyu, and Yang, Shilin. "Representations of a class of positively based algebras." Czechoslovak Mathematical Journal 73.3 (2023): 811-838. <http://eudml.org/doc/299120>.
@article{Lin2023,
abstract = {We investigate the representation theory of the positively based algebra $A_\{m,d\}$, which is a generalization of the noncommutative Green algebra of weak Hopf algebra corresponding to the generalized Taft algebra. It turns out that $A_\{m,d\}$ is of finite representative type if $d\le 4$, of tame type if $d=5$, and of wild type if $d\ge 6.$ In the case when $d\le 4$, all indecomposable representations of $A_\{m,d\}$ are constructed. Furthermore, their right cell representations as well as left cell representations of $A_\{m,d\}$ are described.},
author = {Lin, Shiyu, Yang, Shilin},
journal = {Czechoslovak Mathematical Journal},
keywords = {positively based algebra; indecomposable module; cell module},
language = {eng},
number = {3},
pages = {811-838},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Representations of a class of positively based algebras},
url = {http://eudml.org/doc/299120},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Lin, Shiyu
AU - Yang, Shilin
TI - Representations of a class of positively based algebras
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 3
SP - 811
EP - 838
AB - We investigate the representation theory of the positively based algebra $A_{m,d}$, which is a generalization of the noncommutative Green algebra of weak Hopf algebra corresponding to the generalized Taft algebra. It turns out that $A_{m,d}$ is of finite representative type if $d\le 4$, of tame type if $d=5$, and of wild type if $d\ge 6.$ In the case when $d\le 4$, all indecomposable representations of $A_{m,d}$ are constructed. Furthermore, their right cell representations as well as left cell representations of $A_{m,d}$ are described.
LA - eng
KW - positively based algebra; indecomposable module; cell module
UR - http://eudml.org/doc/299120
ER -
References
top- Assem, I., Simson, D., Skowroński, A., 10.1017/CBO9780511614309, London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). (2006) Zbl1092.16001MR2197389DOI10.1017/CBO9780511614309
- Gel'fand, I. M., Ponomarev, V. A., Problems of linear algebra and classification of quadruples of subspaces in a finite-dimensional vector space, Hilbert Space Operators Operator Algebras Colloquia Math. Soc. János Bolyai 5. North-Holland, Amsterdam (1972), 163-237. (1972) Zbl0294.15002MR0357428
- Gunnlaugsdóttir, E., 10.1016/S0024-3795(02)00484-6, Linear Algebra Appl. 365 (2003), 183-199. (2003) Zbl1041.16027MR1987337DOI10.1016/S0024-3795(02)00484-6
- Kazhdan, D., Lusztig, G., 10.1007/BF01390031, Invent. Math. 53 (1979), 165-184. (1979) Zbl0499.20035MR0560412DOI10.1007/BF01390031
- Kildetoft, D., Mazorchuk, V., 10.4171/dm/555, Doc. Math. 21 (2016), 1171-1192. (2016) Zbl1369.16016MR3578210DOI10.4171/dm/555
- Kudryavtseva, G., Mazorchuk, V., 10.4171/PM/1956, Port. Math. (N.S.) 72 (2015), 47-80. (2015) Zbl1333.20070MR3323510DOI10.4171/PM/1956
- Li, F., 10.1006/jabr.1998.7491, J. Algebra 208 (1998), 72-100. (1998) Zbl0916.16020MR1643979DOI10.1006/jabr.1998.7491
- Li, L., Zhang, Y., 10.1090/conm/585/11618, Hopf Algebras and Tensor Categories Contemporary Mathematics 585. AMS, Providence (2013), 275-288. (2013) Zbl1309.19001MR3077243DOI10.1090/conm/585/11618
- Lusztig, G., 10.1007/BF01390002, Invent. Math. 43 (1977), 125-175. (1977) Zbl0372.20033MR0463275DOI10.1007/BF01390002
- Lusztig, G., 10.1016/1385-7258(79)90036-2, Indag. Math. 41 (1979), 323-335. (1979) Zbl0435.20021MR0546372DOI10.1016/1385-7258(79)90036-2
- Lusztig, G., 10.1016/S1385-7258(82)80013-9, Indag. Math. 44 (1982), 219-226. (1982) Zbl0511.20034MR0662657DOI10.1016/S1385-7258(82)80013-9
- Mazorchuk, V., Miemietz, V., 10.1112/S0010437X11005586, Compos. Math. 147 (2011), 1519-1545. (2011) Zbl1232.17015MR2834731DOI10.1112/S0010437X11005586
- Nazarova, L. A., 10.1070/IM1967v001n06ABEH000619, Math. USSR, Izv. 1 (1969), 1305-1323 translation from Izv. Akad. Nauk SSSR, Ser. Mat. 31 1967 1361-1378. (1969) Zbl0222.16028MR0223352DOI10.1070/IM1967v001n06ABEH000619
- Su, D., Yang, S., 10.1063/1.4986839, J. Math. Phys. 58 (2017), Article ID 091704, 24 pages. (2017) Zbl1375.81142MR3704599DOI10.1063/1.4986839
- Su, D., Yang, S., 10.1007/s10998-017-0221-0, Period. Math. Hung. 76 (2018), 229-242. (2018) Zbl1399.16085MR3805598DOI10.1007/s10998-017-0221-0
- Yang, S., 10.1142/S021949880400071X, J. Algebra Appl. 3 (2004), 91-104. (2004) Zbl1080.16043MR2047638DOI10.1142/S021949880400071X
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.