Stability and stabilization of one class of three time-scale systems with delays

Valery Y. Glizer

Kybernetika (2022)

  • Volume: 58, Issue: 4, page 593-625
  • ISSN: 0023-5954

Abstract

top
A singularly perturbed linear time-invariant time delay controlled system is considered. The singular perturbations are subject to the presence of two small positive multipliers for some of the derivatives in the system. These multipliers (the parameters of singular perturbations) are of different orders of the smallness. The delay in the slow state variable is non-small (of order of 1 ). The delays in the fast state variables are proportional to the corresponding parameters of singular perturbations. Three much simpler parameters-free subsystems are associated with the original system. It is established that the exponential stability of the unforced versions of these subsystems yields the exponential stability of the unforced version of the original system uniformly in the parameters of singular perturbations. It also is shown that the stabilization of the parameters-free subsystems by memory-free state-feedback controls yields the stabilization of the original system by a memory-free state-feedback control uniformly in the parameters of singular perturbations. Illustrative examples are presented.

How to cite

top

Glizer, Valery Y.. "Stability and stabilization of one class of three time-scale systems with delays." Kybernetika 58.4 (2022): 593-625. <http://eudml.org/doc/299475>.

@article{Glizer2022,
abstract = {A singularly perturbed linear time-invariant time delay controlled system is considered. The singular perturbations are subject to the presence of two small positive multipliers for some of the derivatives in the system. These multipliers (the parameters of singular perturbations) are of different orders of the smallness. The delay in the slow state variable is non-small (of order of $1$). The delays in the fast state variables are proportional to the corresponding parameters of singular perturbations. Three much simpler parameters-free subsystems are associated with the original system. It is established that the exponential stability of the unforced versions of these subsystems yields the exponential stability of the unforced version of the original system uniformly in the parameters of singular perturbations. It also is shown that the stabilization of the parameters-free subsystems by memory-free state-feedback controls yields the stabilization of the original system by a memory-free state-feedback control uniformly in the parameters of singular perturbations. Illustrative examples are presented.},
author = {Glizer, Valery Y.},
journal = {Kybernetika},
keywords = {linear controlled system; time delay system; three time-scale singularly perturbed system; exponential stability; memory-free state-feedback stabilization},
language = {eng},
number = {4},
pages = {593-625},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Stability and stabilization of one class of three time-scale systems with delays},
url = {http://eudml.org/doc/299475},
volume = {58},
year = {2022},
}

TY - JOUR
AU - Glizer, Valery Y.
TI - Stability and stabilization of one class of three time-scale systems with delays
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 4
SP - 593
EP - 625
AB - A singularly perturbed linear time-invariant time delay controlled system is considered. The singular perturbations are subject to the presence of two small positive multipliers for some of the derivatives in the system. These multipliers (the parameters of singular perturbations) are of different orders of the smallness. The delay in the slow state variable is non-small (of order of $1$). The delays in the fast state variables are proportional to the corresponding parameters of singular perturbations. Three much simpler parameters-free subsystems are associated with the original system. It is established that the exponential stability of the unforced versions of these subsystems yields the exponential stability of the unforced version of the original system uniformly in the parameters of singular perturbations. It also is shown that the stabilization of the parameters-free subsystems by memory-free state-feedback controls yields the stabilization of the original system by a memory-free state-feedback control uniformly in the parameters of singular perturbations. Illustrative examples are presented.
LA - eng
KW - linear controlled system; time delay system; three time-scale singularly perturbed system; exponential stability; memory-free state-feedback stabilization
UR - http://eudml.org/doc/299475
ER -

References

top
  1. Abed, E. H., , Systems Control Lett. 7 (1986), 207-212. MR0847892DOI
  2. Chen, W.-H., Yang, S. T., Lu, X., Shen, Y., , Int. J. Robust Nonlinear Control 20 (2010), 2021-2044. MR2777531DOI
  3. Chiou, J.-S., Wang, C.-J., , Int. J. Systems Sci. 36 (2005), 485-490. MR2148211DOI
  4. Corless, M., Glielmo, L., , SIAM J. Control Optim. 30 (1992), 1338-1360. MR1185626DOI
  5. Desoer, C. A., Shahruz, S. M., , Circuits Systems Signal Process. 5 (1986), 449-464. MR0893934DOI
  6. Dmitriev, M. G., Kurina, G. A., , Autom. Remote Control 67 (2006), 1-43. MR2206169DOI
  7. Drăgan, V., Near optimal linear quadratic regulator for controlled systems described by Ito differential equations with two fast time scales., Ann. Acad. Rom. Sci. Ser. Math. Appl. 9 (2017), 89-109. MR3663358
  8. Drăgan, V., , Axioms 8 (2019), paper No. 30. MR3663358DOI
  9. Drăgan, V., Ionita, A., , In: Proc. 6th Colloquium on the Qualitative Theory of Differential Equations, Szeged (1999), pp. 1-8. MR1798656DOI
  10. Dragan, V., Mukaidani, H., , In: Proc. 2011 50th IEEE Conference on Decision and Control and European Control Conference, IEEE, New York 2011, pp. 740-745. DOI
  11. Erneux, T., Applied Delay Differential Equations., Springer, New York 2009. MR2498700
  12. Fridman, E., Introduction to Time-Delay Systems., Birkhäuser, New York 2014. MR3237720
  13. Fridman, E., Shaked, U., , IEEE Trans. Automat. Control 47 (2002), 1931-1937. MR1937712DOI
  14. Gajic, Z., Lim, M. T., Optimal Control of Singularly Perturbed Linear Systems and Applications. High Accuracy Techniques., Marsel Dekker, New York 2001. MR1816761
  15. Gantmacher, F. R., The Theory of Matrices. Vol. 2., Chelsea, New York 1974. MR0107649
  16. Glizer, V. Y., , IEEE Trans. Automat. Control 49 (2004), 1012-1016. MR2064381DOI
  17. Glizer, V. Y., , J. Optim. Theory Appl. 183 (2019), 50-65. MR3989296DOI
  18. Glizer, V. Y., , Birkhäuser 2021. MR4248805DOI
  19. Glizer, V. Y., Fridman, E., , IMA J. Math. Control Inform. 29 (2012), 79-111. MR2904147DOI
  20. Glizer, V. Y., Fridman, E., Feigin, Y., , SIAM J. Control Optim. 55 (2017), 236-274. MR3604028DOI
  21. Gu, K., Niculescu, S.-I., , J. Dyn. Syst. Meas. Control 125 (2003), 158-165. DOI
  22. Hale, J. K., Lunel, S. M. Verduyn, , Springer, New York 1993. MR1243878DOI
  23. Hoppensteadt, F., , J. Differential Equations 5 (1969), 106-116. MR0239216DOI
  24. Ioannou, P., Kokotovic, P., , Automatica J. IFAC 21 (1985), 401-412. MR0798185DOI
  25. Ionita, A., Drăgan, V., Stabilization of singularly perturbed linear systems with delay and saturating control., In: Proc. 7th Mediterranean Conference on Control and Automation, Mediterranean Control Association, Cyprus 1999, 1855-1869. 
  26. Kathirkamanayagan, M., Ladde, G. S., , J. Math. Anal. Appl. 135 (1988), 38-60. MR0960805DOI
  27. Khalil, H. K., , Automatica J. IFAC 17 (1981), 797-804. MR0638496DOI
  28. Khalil, H. K., , IEEE Trans. Automat. Contr. 34 (1989), 1052-1060. MR1014326DOI
  29. Khalil, H. K., Kokotovic, P. V., , SIAM J. Control Optim. 17 (1979) 56-65. MR0516856DOI
  30. Khalil, H. K., Kokotovic, P. V., , Automatica J. IFAC 15 (1979), 197-207. MR0525773DOI
  31. Kokotovic, P. V., Khalil, H. K., O'Reilly, J., Singular Perturbation Methods in Control: Analysis and Design., SIAM, Philadelphia 1999. MR1727138
  32. Kuehn, C., , Springer, New York 2015. MR3309627DOI
  33. Kurina, G. A., , Math. Notes 52 (1992), 1029-1033. MR1203952DOI
  34. Ladde, G. S., Šiljak, D. D., , Automatica J. IFAC 19 (1983), 385-394. MR0716052DOI
  35. Mahmoud, M. S., , Math. Probl. Engrg. 2017 (2017), article ID 7354654. MR3666297DOI
  36. Naidu, D. S., Singular perturbations and time scales in control theory and applications: an overview., Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 9 (2002), 233-278. MR1897791
  37. Nam, P. T., Phat, V. N., , J. Optim. Theory Appl. 140 (2009), 287-299. MR2472210DOI
  38. Pawluszewicz, E., Tsekhan, O., , Int. J. Control, Published online: 28 Apr 2021, https://doi.org/10.1080/00207179.2021.1913289 MR4475359DOI
  39. Richard, J.-P., , Automatica J. IFAC 39 (2003), 1667-1694. MR2141765DOI
  40. Sagara, M., Mukaidani, H., Dragan, V., , Optim. Control Appl. Methods 32 (2011), 113-125. MR2791410DOI
  41. Sipahi, R., Niculescu, S.-I., Abdallah, C. T., Gu, K., , IEEE Control Systems Magazine 31 (2011), 38-65. MR2789811DOI
  42. Sun, F., Yang, C., Zhang, Q., Shen, Y., , Chemical Industry and Chemical Engineering Quarterly 19 (2013), 505-511. DOI
  43. Vasil'eva, A. B., Butuzov, V. F., Kalachev, L. V., The Boundary Function Method for Singular Perturbation Problems., SIAM, Philadelphia 1995. MR1316892

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.