Stability and stabilization of one class of three time-scale systems with delays
Kybernetika (2022)
- Volume: 58, Issue: 4, page 593-625
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topGlizer, Valery Y.. "Stability and stabilization of one class of three time-scale systems with delays." Kybernetika 58.4 (2022): 593-625. <http://eudml.org/doc/299475>.
@article{Glizer2022,
abstract = {A singularly perturbed linear time-invariant time delay controlled system is considered. The singular perturbations are subject to the presence of two small positive multipliers for some of the derivatives in the system. These multipliers (the parameters of singular perturbations) are of different orders of the smallness. The delay in the slow state variable is non-small (of order of $1$). The delays in the fast state variables are proportional to the corresponding parameters of singular perturbations. Three much simpler parameters-free subsystems are associated with the original system. It is established that the exponential stability of the unforced versions of these subsystems yields the exponential stability of the unforced version of the original system uniformly in the parameters of singular perturbations. It also is shown that the stabilization of the parameters-free subsystems by memory-free state-feedback controls yields the stabilization of the original system by a memory-free state-feedback control uniformly in the parameters of singular perturbations. Illustrative examples are presented.},
author = {Glizer, Valery Y.},
journal = {Kybernetika},
keywords = {linear controlled system; time delay system; three time-scale singularly perturbed system; exponential stability; memory-free state-feedback stabilization},
language = {eng},
number = {4},
pages = {593-625},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Stability and stabilization of one class of three time-scale systems with delays},
url = {http://eudml.org/doc/299475},
volume = {58},
year = {2022},
}
TY - JOUR
AU - Glizer, Valery Y.
TI - Stability and stabilization of one class of three time-scale systems with delays
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 4
SP - 593
EP - 625
AB - A singularly perturbed linear time-invariant time delay controlled system is considered. The singular perturbations are subject to the presence of two small positive multipliers for some of the derivatives in the system. These multipliers (the parameters of singular perturbations) are of different orders of the smallness. The delay in the slow state variable is non-small (of order of $1$). The delays in the fast state variables are proportional to the corresponding parameters of singular perturbations. Three much simpler parameters-free subsystems are associated with the original system. It is established that the exponential stability of the unforced versions of these subsystems yields the exponential stability of the unforced version of the original system uniformly in the parameters of singular perturbations. It also is shown that the stabilization of the parameters-free subsystems by memory-free state-feedback controls yields the stabilization of the original system by a memory-free state-feedback control uniformly in the parameters of singular perturbations. Illustrative examples are presented.
LA - eng
KW - linear controlled system; time delay system; three time-scale singularly perturbed system; exponential stability; memory-free state-feedback stabilization
UR - http://eudml.org/doc/299475
ER -
References
top- Abed, E. H., , Systems Control Lett. 7 (1986), 207-212. MR0847892DOI
- Chen, W.-H., Yang, S. T., Lu, X., Shen, Y., , Int. J. Robust Nonlinear Control 20 (2010), 2021-2044. MR2777531DOI
- Chiou, J.-S., Wang, C.-J., , Int. J. Systems Sci. 36 (2005), 485-490. MR2148211DOI
- Corless, M., Glielmo, L., , SIAM J. Control Optim. 30 (1992), 1338-1360. MR1185626DOI
- Desoer, C. A., Shahruz, S. M., , Circuits Systems Signal Process. 5 (1986), 449-464. MR0893934DOI
- Dmitriev, M. G., Kurina, G. A., , Autom. Remote Control 67 (2006), 1-43. MR2206169DOI
- Drăgan, V., Near optimal linear quadratic regulator for controlled systems described by Ito differential equations with two fast time scales., Ann. Acad. Rom. Sci. Ser. Math. Appl. 9 (2017), 89-109. MR3663358
- Drăgan, V., , Axioms 8 (2019), paper No. 30. MR3663358DOI
- Drăgan, V., Ionita, A., , In: Proc. 6th Colloquium on the Qualitative Theory of Differential Equations, Szeged (1999), pp. 1-8. MR1798656DOI
- Dragan, V., Mukaidani, H., , In: Proc. 2011 50th IEEE Conference on Decision and Control and European Control Conference, IEEE, New York 2011, pp. 740-745. DOI
- Erneux, T., Applied Delay Differential Equations., Springer, New York 2009. MR2498700
- Fridman, E., Introduction to Time-Delay Systems., Birkhäuser, New York 2014. MR3237720
- Fridman, E., Shaked, U., , IEEE Trans. Automat. Control 47 (2002), 1931-1937. MR1937712DOI
- Gajic, Z., Lim, M. T., Optimal Control of Singularly Perturbed Linear Systems and Applications. High Accuracy Techniques., Marsel Dekker, New York 2001. MR1816761
- Gantmacher, F. R., The Theory of Matrices. Vol. 2., Chelsea, New York 1974. MR0107649
- Glizer, V. Y., , IEEE Trans. Automat. Control 49 (2004), 1012-1016. MR2064381DOI
- Glizer, V. Y., , J. Optim. Theory Appl. 183 (2019), 50-65. MR3989296DOI
- Glizer, V. Y., , Birkhäuser 2021. MR4248805DOI
- Glizer, V. Y., Fridman, E., , IMA J. Math. Control Inform. 29 (2012), 79-111. MR2904147DOI
- Glizer, V. Y., Fridman, E., Feigin, Y., , SIAM J. Control Optim. 55 (2017), 236-274. MR3604028DOI
- Gu, K., Niculescu, S.-I., , J. Dyn. Syst. Meas. Control 125 (2003), 158-165. DOI
- Hale, J. K., Lunel, S. M. Verduyn, , Springer, New York 1993. MR1243878DOI
- Hoppensteadt, F., , J. Differential Equations 5 (1969), 106-116. MR0239216DOI
- Ioannou, P., Kokotovic, P., , Automatica J. IFAC 21 (1985), 401-412. MR0798185DOI
- Ionita, A., Drăgan, V., Stabilization of singularly perturbed linear systems with delay and saturating control., In: Proc. 7th Mediterranean Conference on Control and Automation, Mediterranean Control Association, Cyprus 1999, 1855-1869.
- Kathirkamanayagan, M., Ladde, G. S., , J. Math. Anal. Appl. 135 (1988), 38-60. MR0960805DOI
- Khalil, H. K., , Automatica J. IFAC 17 (1981), 797-804. MR0638496DOI
- Khalil, H. K., , IEEE Trans. Automat. Contr. 34 (1989), 1052-1060. MR1014326DOI
- Khalil, H. K., Kokotovic, P. V., , SIAM J. Control Optim. 17 (1979) 56-65. MR0516856DOI
- Khalil, H. K., Kokotovic, P. V., , Automatica J. IFAC 15 (1979), 197-207. MR0525773DOI
- Kokotovic, P. V., Khalil, H. K., O'Reilly, J., Singular Perturbation Methods in Control: Analysis and Design., SIAM, Philadelphia 1999. MR1727138
- Kuehn, C., , Springer, New York 2015. MR3309627DOI
- Kurina, G. A., , Math. Notes 52 (1992), 1029-1033. MR1203952DOI
- Ladde, G. S., Šiljak, D. D., , Automatica J. IFAC 19 (1983), 385-394. MR0716052DOI
- Mahmoud, M. S., , Math. Probl. Engrg. 2017 (2017), article ID 7354654. MR3666297DOI
- Naidu, D. S., Singular perturbations and time scales in control theory and applications: an overview., Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 9 (2002), 233-278. MR1897791
- Nam, P. T., Phat, V. N., , J. Optim. Theory Appl. 140 (2009), 287-299. MR2472210DOI
- Pawluszewicz, E., Tsekhan, O., , Int. J. Control, Published online: 28 Apr 2021, https://doi.org/10.1080/00207179.2021.1913289 MR4475359DOI
- Richard, J.-P., , Automatica J. IFAC 39 (2003), 1667-1694. MR2141765DOI
- Sagara, M., Mukaidani, H., Dragan, V., , Optim. Control Appl. Methods 32 (2011), 113-125. MR2791410DOI
- Sipahi, R., Niculescu, S.-I., Abdallah, C. T., Gu, K., , IEEE Control Systems Magazine 31 (2011), 38-65. MR2789811DOI
- Sun, F., Yang, C., Zhang, Q., Shen, Y., , Chemical Industry and Chemical Engineering Quarterly 19 (2013), 505-511. DOI
- Vasil'eva, A. B., Butuzov, V. F., Kalachev, L. V., The Boundary Function Method for Singular Perturbation Problems., SIAM, Philadelphia 1995. MR1316892
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.