### A hybrid domain analysis for systems with delays in state and control.

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

A problem of guaranteed control is under discussion. This problem consists in the attainment of a given target set by a phase trajectory of a system described by an equation with time delay. An uncontrolled disturbance (along with a control) is assumed to act upon the system. An algorithm for solving the problem in the case when information on a phase trajectory is incomplete (measurements of a 'part' of coordinates) is designed. The algorithm is stable with respect to informational noises and computational...

The problem of state reconstruction from input and output measurements for nonlinear time delay systems is studied in this paper and a state observer is proposed that is easy to implement and, under suitable assumptions on the system and on the input function, gives exponential observation error decay. The proposed observer is itself a delay system and can be classified as an identity observer, in that it is such that if at a given time instant the system and observer states coincide, on a suitable...

The implementation of control laws with distributed delays that assign the spectrum of unstable linear multivariable systems with delay in the input requires an approximation of the integral. A necessary condition for stability of the closed-loop system is shown to be the stability of the controller itself. An illustrative multivariable example is given.

A nonlinear filtering problem with delays in the state and observation equations is considered. The unnormalized conditional probability density of the filtered diffusion process satisfies the so-called Zakai equation and solves the nonlinear filtering problem. We examine the solution of the Zakai equation using an approximation result. Our theoretical deliberations are illustrated by a numerical example.

In this paper, we consider a multi-agent consensus problem with an active leader and variable interconnection topology. The dynamics of the active leader is given in a general form of linear system. The switching interconnection topology with communication delay among the agents is taken into consideration. A neighbor-based estimator is designed for each agent to obtain the unmeasurable state variables of the dynamic leader, and then a distributed feedback control law is developed to achieve consensus....

A delay stochastic method is introduced to control a certain class of chaotic systems. With the Lyapunov method, a suitable kind of controllers with multiplicative noise is designed to stabilize the chaotic state to the equilibrium point. The method is simple and can be put into practice. Numerical simulations are provided to illustrate the effectiveness of the proposed controllable conditions.

The paper deals with the generalized Popov theory applied to uncertain systems with distributed time delay. Sufficient conditions for stabilizing this class of delayed systems as well as for $\gamma $-attenuation achievement are given in terms of algebraic properties of a Popov system via a Liapunov–Krasovskii functional. The considered approach is new in the context of distributed linear time-delay systems and gives some interesting interpretations of ${H}^{\infty}$ memoryless control problems in terms of Popov triplets...

In this paper we study the approximate and complete controllability of stochastic integrodifferential system in finite dimensional spaces. Sufficient conditions are established for each of these types of controllability. The results are obtained by using the Picard iteration technique.

In this paper, we shall establish sufficient conditions for the controllability on semi-infinite intervals for first and second order functional differential inclusions in Banach spaces. We shall rely on a fixed point theorem due to Ma, which is an extension on locally convex topological spaces, of Schaefer's theorem. Moreover, by using the fixed point index arguments the implicit case is treated.

We prove controllability results for first and second order semilinear differential inclusions in Banach spaces with nonlocal conditions.

Many real-world systems contain uncertainties and with time-varying delays, also, they have become larger and more complicated. Hence, a new decentralized variable structure control law is proposed for a class of uncertain large-scale system with time varying delay in the interconnection and time varying unmatched uncertainties in the state matrix. The proposed decentralized control law for the large-scale time-varying delay system is realized independently through the delayed terms and it can drive...

This paper addresses the problems of stability analysis and decentralized control of interconnected linear systems with constant time-delays in the state of each subsystems as well as in the interconnections. We develop delay- dependent methods of stability analysis and decentralized stabilization via linear memoryless state-feedback. The proposed methods are given in terms of linear matrix inequalities. Extensions of the decentralized stabilization result to more complex control problems, such...

The problem of the decentralized robust tracking and model following is considered for a class of uncertain large scale systems including time-varying delays in the interconnections. On the basis of the Razumikhin-type theorem and the Lyapunov stability theory, a class of decentralized memoryless local state feedback controllers is proposed for robust tracking of dynamical signals. It is shown that by employing the proposed decentralized robust tracking controllers, one can guarantee that the tracking...