Spectral estimates of vibration frequencies of anisotropic beams
Applications of Mathematics (2023)
- Volume: 68, Issue: 1, page 15-33
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topSabatini, Luca. "Spectral estimates of vibration frequencies of anisotropic beams." Applications of Mathematics 68.1 (2023): 15-33. <http://eudml.org/doc/299478>.
@article{Sabatini2023,
abstract = {The use of one theorem of spectral analysis proved by Bordoni on a model of linear anisotropic beam proposed by the author allows the determination of the variation range of vibration frequencies of a beam in two typical restraint conditions. The proposed method is very general and allows its use on a very wide set of problems of engineering practice and mathematical physics.},
author = {Sabatini, Luca},
journal = {Applications of Mathematics},
keywords = {theory of beams; deformation of cross section; spectral geometry; comparison of spectra},
language = {eng},
number = {1},
pages = {15-33},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Spectral estimates of vibration frequencies of anisotropic beams},
url = {http://eudml.org/doc/299478},
volume = {68},
year = {2023},
}
TY - JOUR
AU - Sabatini, Luca
TI - Spectral estimates of vibration frequencies of anisotropic beams
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 1
SP - 15
EP - 33
AB - The use of one theorem of spectral analysis proved by Bordoni on a model of linear anisotropic beam proposed by the author allows the determination of the variation range of vibration frequencies of a beam in two typical restraint conditions. The proposed method is very general and allows its use on a very wide set of problems of engineering practice and mathematical physics.
LA - eng
KW - theory of beams; deformation of cross section; spectral geometry; comparison of spectra
UR - http://eudml.org/doc/299478
ER -
References
top- Bordoni, M., An estimate for finite sums of eigenvalues of fiber spaces, C. R. Acad. Sci., Paris Sér. I 315 (1992), 1079-1083. (1992) Zbl0761.53019MR1191493
- Bordoni, M., 10.1007/BF01459757, Math. Ann. 298 (1994), 693-718. (1994) Zbl0791.58094MR1268600DOI10.1007/BF01459757
- Bordoni, M., Spectral comparison between Dirac and Schrödinger operators, Rend. Mat. Appl., VII. Ser. 18 (1998), 181-196. (1998) Zbl0919.58064MR1638207
- Brézis, H., Analyse fonctionnelle. Théorie et applications, Collection Mathématiques Appliquées pour la Maîtrise. Masson, Paris (1983), French. (1983) Zbl0511.46001MR0697382
- Picone, M., Fichera, G., Trattato di analisi matematica, Tumminelli, Roma (1954), Italian. (1954) Zbl0058.03803MR0106814
- Reed, M., Simon, B., 10.1016/b978-0-12-585001-8.x5001-6, Academic Press, New York (1972). (1972) Zbl0242.46001MR0493419DOI10.1016/b978-0-12-585001-8.x5001-6
- Reed, M., Simon, B., Methods of Modern Mathematical Physics. Vol. II: Fourier Analysis, Self-Adjointness, Academic Press, New York (1975). (1975) Zbl0308.47002MR0493420
- Reed, M., Simon, B., Methods of Modern Mathematical Physics. Vol. IV: Analysis of Operators, Academic Press, New York (1978). (1978) Zbl0401.47001MR0493421
- Sabatini, L., 10.21136/AM.2018.0316-16, Appl. Math., Praha 63 (2018), 37-53. (2018) Zbl06861541MR3763981DOI10.21136/AM.2018.0316-16
- Sabatini, L., 10.2478/auom-2019-0027, An. Ştiinţ. Univ. "Ovidius" Constanţa, Ser. Mat. 27 (2019), 179-211. (2019) MR3956406DOI10.2478/auom-2019-0027
- Sabatini, L., 10.2478/auom-2020-0012, An. Ştiinţ. Univ. "Ovidius" Constanţa, Ser. Mat. 28 (2020), 165-179. (2020) MR4089855DOI10.2478/auom-2020-0012
- Sabatini, L., 10.22124/jmm.2021.17932.1548, J. Math. Model. 9 (2021), 465-483. (2021) MR4275997DOI10.22124/jmm.2021.17932.1548
- Tikhonov, A. N., Samarskij, A. A., Equazioni della fisica matematica, Mir, Roma (1981), Italian. (1981) Zbl0489.35001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.