Special sets of reals and weak forms of normality on Isbell--Mrówka spaces
Vinicius de Oliveira Rodrigues; Victor dos Santos Ronchim; Paul J. Szeptycki
Commentationes Mathematicae Universitatis Carolinae (2023)
- Volume: 64, Issue: 1, page 109-126
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topde Oliveira Rodrigues, Vinicius, dos Santos Ronchim, Victor, and Szeptycki, Paul J.. "Special sets of reals and weak forms of normality on Isbell--Mrówka spaces." Commentationes Mathematicae Universitatis Carolinae 64.1 (2023): 109-126. <http://eudml.org/doc/299482>.
@article{deOliveiraRodrigues2023,
abstract = {We recall some classical results relating normality and some natural weakenings of normality in $\Psi $-spaces over almost disjoint families of branches in the Cantor tree to special sets of reals like $Q$-sets, $\lambda $-sets and $\sigma $-sets. We introduce a new class of special sets of reals which corresponds to the corresponding almost disjoint family of branches being $\aleph _0$-separated. This new class fits between $\lambda $-sets and perfectly meager sets. We also discuss conditions for an almost disjoint family $\mathcal \{A\}$ being potentially almost-normal (pseudonormal), in the sense that $\mathcal \{A\}$ is almost-normal (pseudonormal) in some c.c.c. forcing extension.},
author = {de Oliveira Rodrigues, Vinicius, dos Santos Ronchim, Victor, Szeptycki, Paul J.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Isbell–Mrówka spaces; almost disjoint families; almost-normal; weak $\lambda $-set},
language = {eng},
number = {1},
pages = {109-126},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Special sets of reals and weak forms of normality on Isbell--Mrówka spaces},
url = {http://eudml.org/doc/299482},
volume = {64},
year = {2023},
}
TY - JOUR
AU - de Oliveira Rodrigues, Vinicius
AU - dos Santos Ronchim, Victor
AU - Szeptycki, Paul J.
TI - Special sets of reals and weak forms of normality on Isbell--Mrówka spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2023
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 64
IS - 1
SP - 109
EP - 126
AB - We recall some classical results relating normality and some natural weakenings of normality in $\Psi $-spaces over almost disjoint families of branches in the Cantor tree to special sets of reals like $Q$-sets, $\lambda $-sets and $\sigma $-sets. We introduce a new class of special sets of reals which corresponds to the corresponding almost disjoint family of branches being $\aleph _0$-separated. This new class fits between $\lambda $-sets and perfectly meager sets. We also discuss conditions for an almost disjoint family $\mathcal {A}$ being potentially almost-normal (pseudonormal), in the sense that $\mathcal {A}$ is almost-normal (pseudonormal) in some c.c.c. forcing extension.
LA - eng
KW - Isbell–Mrówka spaces; almost disjoint families; almost-normal; weak $\lambda $-set
UR - http://eudml.org/doc/299482
ER -
References
top- Blass A., Combinatorial cardinal characteristics of the continuum, Handbook of set theory 1,2,3, Springer, Dordrecht, 2010, pages 395–489. MR2768685
- Brendle J., 10.4153/CMB-1999-002-2, Canad. Math. Bull. 42 (1999), no. 1, 13–24. MR1695894DOI10.4153/CMB-1999-002-2
- Mauldin R. D., 10.4064/fm-95-2-129-139, Fund. Math. 95 (1977), no. 2, 129–139. MR0440497DOI10.4064/fm-95-2-129-139
- de Oliveira Rodrigues V., dos Santos Ronchim V., Almost-normality of Isbell–Mrówka spaces, Topology Appl. 288 (2021), Paper No. 107470, 13 pages. MR4186077
- Engelking R., General Topology, Mathematical Monographs, 60, PWN—Polish Scientific Publishers, Warszawa, 1977. Zbl0684.54001MR0500780
- Fleissner W. G., Miller A. W., On sets, Proc. Amer. Math. Soc. 78 (1980), no. 2, 280–284. MR0550513
- Garcia-Balan S. A., Szeptycki P. J., 10.4064/fm935-11-2021, Fund. Math. 258 (2022), no. 2, 137–151. MR4434347DOI10.4064/fm935-11-2021
- Hernández-Hernández F., Hrušák M., Topology of Mrówka–Isbell spaces, in Pseudocompact Topological Spaces, Springer, Cham, 2018, pages 253–289. MR3822423
- Hernández-Hernández F., Hrušák M., -sets and normality of -spaces, Spring Topology and Dynamical Systems Conf., Topology Proc. 29 (2005), no. 1, 155–165. MR2182924
- Hrušák M., Almost Disjoint Families and Topology, in Recent Progress in General Topology III, Atlantis Press, Paris, 2014, pages 601–638. MR3205494
- Hrušák M., Guzmán O., 10.1016/j.topol.2013.05.015, Topology Appl. 160 (2013), no. 12, 1364–1374. MR3072697DOI10.1016/j.topol.2013.05.015
- Martin D. A., Solovay R. M., 10.1016/0003-4843(70)90009-4, Ann. Math. Logic 2 (1970), no. 2, 143–178. MR0270904DOI10.1016/0003-4843(70)90009-4
- Miller A. W., 10.1016/0003-4843(79)90003-2, Ann. Math. Logic 16 (1979), no. 3, 233–267. MR0548475DOI10.1016/0003-4843(79)90003-2
- Miller A. W., Special subsets of the real line, in Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pages 201–233. Zbl0588.54035MR0776624
- Miller A. W., A MAD -set, Fund. Math. 178 (2003), no. 3, 271–281. MR2030486
- Reed G. M., Set-theoretic problems in Moore spaces, in Open Problems in Topology, North-Holland, Amsterdam, 1990, pages 163–181. MR1078645
- van Douwen E. K., The integers and topology, in Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pages 111–167. Zbl0561.54004MR0776622
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.