Displaying similar documents to “Special sets of reals and weak forms of normality on Isbell--Mrówka spaces”

Asymmetric tie-points and almost clopen subsets of *

Alan S. Dow, Saharon Shelah (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A tie-point of compact space is analogous to a cut-point: the complement of the point falls apart into two relatively clopen non-compact subsets. We review some of the many consistency results that have depended on the construction of tie-points of * . One especially important application, due to Veličković, was to the existence of nontrivial involutions on * . A tie-point of * has been called symmetric if it is the unique fixed point of an involution. We define the notion of an almost...

Factorizations of normality via generalizations of β -normality

Ananga Kumar Das, Pratibha Bhat, Ria Gupta (2016)

Mathematica Bohemica

Similarity:

The notion of β -normality was introduced and studied by Arhangel’skii, Ludwig in 2001. Recently, almost β -normal spaces, which is a simultaneous generalization of β -normal and almost normal spaces, were introduced by Das, Bhat and Tartir. We introduce a new generalization of normality, namely weak β -normality, in terms of θ -closed sets, which turns out to be a simultaneous generalization of β -normality and θ -normality. A space X is said to be weakly β -normal (w β -normal ) if for every...

Functionally countable subalgebras and some properties of the Banaschewski compactification

A. R. Olfati (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let X be a zero-dimensional space and C c ( X ) be the set of all continuous real valued functions on X with countable image. In this article we denote by C c K ( X ) (resp., C c ψ ( X ) ) the set of all functions in C c ( X ) with compact (resp., pseudocompact) support. First, we observe that C c K ( X ) = O c β 0 X X (resp., C c ψ ( X ) = M c β 0 X υ 0 X ), where β 0 X is the Banaschewski compactification of X and υ 0 X is the -compactification of X . This implies that for an -compact space X , the intersection of all free maximal ideals in C c ( X ) is equal to C c K ( X ) , i.e., M c β 0 X X = C c K ( X ) . By applying...

The Rothberger property on C p ( Ψ ( 𝒜 ) , 2 )

Daniel Bernal-Santos (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A space X is said to have the Rothberger property (or simply X is Rothberger) if for every sequence 𝒰 n : n ω of open covers of X , there exists U n 𝒰 n for each n ω such that X = n ω U n . For any n ω , necessary and sufficient conditions are obtained for C p ( Ψ ( 𝒜 ) , 2 ) n to have the Rothberger property when 𝒜 is a Mrówka mad family and, assuming CH (the Continuum Hypothesis), we prove the existence of a maximal almost disjoint family 𝒜 for which the space C p ( Ψ ( 𝒜 ) , 2 ) n is Rothberger for all n ω .

On butterfly-points in β X , Tychonoff products and weak Lindelöf numbers

Sergei Logunov (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let X be the Tychonoff product α < τ X α of τ -many Tychonoff non-single point spaces X α . Let p X * be a point in the closure of some G X whose weak Lindelöf number is strictly less than the cofinality of τ . Then we show that β X { p } is not normal. Under some additional assumptions, p is a butterfly-point in β X . In particular, this is true if either X = ω τ or X = R τ and τ is infinite and not countably cofinal.

On almost complex structures from classical linear connections

Jan Kurek, Włodzimierz M. Mikulski (2017)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let f m be the category of m -dimensional manifolds and local diffeomorphisms and  let T be the tangent functor on f m . Let 𝒱 be the category of real vector spaces and linear maps and let 𝒱 m be the category of m -dimensional real vector spaces and linear isomorphisms. We characterize all regular covariant functors F : 𝒱 m 𝒱 admitting f m -natural operators J ˜ transforming classical linear connections on m -dimensional manifolds M into almost complex structures J ˜ ( ) on F ( T ) M = x M F ( T x M ) .

On almost everywhere differentiability of the metric projection on closed sets in l p ( n ) , 2 < p <

Tord Sjödin (2018)

Czechoslovak Mathematical Journal

Similarity:

Let F be a closed subset of n and let P ( x ) denote the metric projection (closest point mapping) of x n onto F in l p -norm. A classical result of Asplund states that P is (Fréchet) differentiable almost everywhere (a.e.) in n in the Euclidean case p = 2 . We consider the case 2 < p < and prove that the i th component P i ( x ) of P ( x ) is differentiable a.e. if P i ( x ) x i and satisfies Hölder condition of order 1 / ( p - 1 ) if P i ( x ) = x i .

A complete characterization of R-sets in the theory of differentiation of integrals

G. A. Karagulyan (2007)

Studia Mathematica

Similarity:

Let s be the family of open rectangles in the plane ℝ² with a side of angle s to the x-axis. We say that a set S of directions is an R-set if there exists a function f ∈ L¹(ℝ²) such that the basis s differentiates the integral of f if s ∉ S, and D ̅ s f ( x ) = l i m s u p d i a m ( R ) 0 , x R s | R | - 1 R f = almost everywhere if s ∈ S. If the condition D ̅ s f ( x ) = holds on a set of positive measure (instead of a.e.) we say that S is a WR-set. It is proved that S is an R-set (resp. a WR-set) if and only if it is a G δ (resp. a G δ σ ).

On non-normality points, Tychonoff products and Suslin number

Sergei Logunov (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let a space X be Tychonoff product α < τ X α of τ -many Tychonoff nonsingle point spaces X α . Let Suslin number of X be strictly less than the cofinality of τ . Then we show that every point of remainder is a non-normality point of its Čech–Stone compactification β X . In particular, this is true if X is either R τ or ω τ and a cardinal τ is infinite and not countably cofinal.

Spaces with property ( D C ( ω 1 ) )

Wei-Feng Xuan, Wei-Xue Shi (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove that if X is a first countable space with property ( D C ( ω 1 ) ) and with a G δ -diagonal then the cardinality of X is at most 𝔠 . We also show that if X is a first countable, DCCC, normal space then the extent of X is at most 𝔠 .

Complex series and connected sets

B. Jasek

Similarity:

CONTENTSPREFACE..........................................................................................................................................................................3INTRODUCTION............................................................................................................................................................. 41. Notation. 2. Subject of the paper.Chapter I. DECOMPOSITION OF Σ INTO Σ 1 , Σ 2 , Σ 3 , Σ 4 INESSENTIAL RESTRICTIONOF GENERALITY ...............................................................................................................................................................

Locally functionally countable subalgebra of ( L )

M. Elyasi, A. A. Estaji, M. Robat Sarpoushi (2020)

Archivum Mathematicum

Similarity:

Let L c ( X ) = { f C ( X ) : C f ¯ = X } , where C f is the union of all open subsets U X such that | f ( U ) | 0 . In this paper, we present a pointfree topology version of L c ( X ) , named c ( L ) . We observe that c ( L ) enjoys most of the important properties shared by ( L ) and c ( L ) , where c ( L ) is the pointfree version of all continuous functions of C ( X ) with countable image. The interrelation between ( L ) , c ( L ) , and c ( L ) is examined. We show that L c ( X ) c ( 𝔒 ( X ) ) for any space X . Frames L for which c ( L ) = ( L ) are characterized.