Event-triggered optimal control of completely unknown nonlinear systems via identifier-critic learning
Zhinan Peng; Zhiquan Zhang; Rui Luo; Yiqun Kuang; Jiangping Hu; Hong Cheng; Bijoy Kumar Ghosh
Kybernetika (2023)
- Volume: 59, Issue: 3, page 365-391
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topPeng, Zhinan, et al. "Event-triggered optimal control of completely unknown nonlinear systems via identifier-critic learning." Kybernetika 59.3 (2023): 365-391. <http://eudml.org/doc/299493>.
@article{Peng2023,
abstract = {This paper proposes an online identifier-critic learning framework for event-triggered optimal control of completely unknown nonlinear systems. Unlike classical adaptive dynamic programming (ADP) methods with actor-critic neural networks (NNs), a filter-regression-based approach is developed to reconstruct the unknown system dynamics, and thus avoid the dependence on an accurate system model in the control design loop. Meanwhile, NN adaptive laws are designed for the parameter estimation by using only the measured system state and input data, and facilitate the identifier-critic NN design. The convergence of the adaptive laws is analyzed. Furthermore, in order to reduce state sampling frequency, two kinds of aperiodic sampling schemes, namely static and dynamic event triggers, are embedded into the proposed optimal control design. Finally, simulation results are presented to demonstrate the effectiveness of the proposed event-triggered optimal control strategy.},
author = {Peng, Zhinan, Zhang, Zhiquan, Luo, Rui, Kuang, Yiqun, Hu, Jiangping, Cheng, Hong, Ghosh, Bijoy Kumar},
journal = {Kybernetika},
keywords = {optimal control; unknown nonlinear system; adaptive dynamic programming; identifier-critic neural networks; event-triggered mechanism},
language = {eng},
number = {3},
pages = {365-391},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Event-triggered optimal control of completely unknown nonlinear systems via identifier-critic learning},
url = {http://eudml.org/doc/299493},
volume = {59},
year = {2023},
}
TY - JOUR
AU - Peng, Zhinan
AU - Zhang, Zhiquan
AU - Luo, Rui
AU - Kuang, Yiqun
AU - Hu, Jiangping
AU - Cheng, Hong
AU - Ghosh, Bijoy Kumar
TI - Event-triggered optimal control of completely unknown nonlinear systems via identifier-critic learning
JO - Kybernetika
PY - 2023
PB - Institute of Information Theory and Automation AS CR
VL - 59
IS - 3
SP - 365
EP - 391
AB - This paper proposes an online identifier-critic learning framework for event-triggered optimal control of completely unknown nonlinear systems. Unlike classical adaptive dynamic programming (ADP) methods with actor-critic neural networks (NNs), a filter-regression-based approach is developed to reconstruct the unknown system dynamics, and thus avoid the dependence on an accurate system model in the control design loop. Meanwhile, NN adaptive laws are designed for the parameter estimation by using only the measured system state and input data, and facilitate the identifier-critic NN design. The convergence of the adaptive laws is analyzed. Furthermore, in order to reduce state sampling frequency, two kinds of aperiodic sampling schemes, namely static and dynamic event triggers, are embedded into the proposed optimal control design. Finally, simulation results are presented to demonstrate the effectiveness of the proposed event-triggered optimal control strategy.
LA - eng
KW - optimal control; unknown nonlinear system; adaptive dynamic programming; identifier-critic neural networks; event-triggered mechanism
UR - http://eudml.org/doc/299493
ER -
References
top- Bhasin, S., Kamalapurkar, R., Johnson, M., Vamvoudakis, K. G., Lewis, F. L., Dixon, W. E., , Automatica 49 (2013), 82-92. MR2999950DOI
- Chen, B., Hu, J., Zhao, Y., Ghosh, B. K., , Neurocomputing 481 (2022), 322-332. DOI
- Fu, X., Li, Z., , Kybernetika 57 (2021), 546-566. MR4299463DOI
- Girard, A., , IEEE Trans. Autom. Control 60 (2015), 1992-1997. MR3365092DOI
- Hu, J., Chen, G., Li, H.-X., Distributed event-triggered tracking control of leader-follower multi-agent systems with communication delays., Kybernetika 47 (2011), 630-643. Zbl1227.93008MR2884865
- Hu, J., Geng, J., Zhu, H., , Commun. Nonlinear Sci. Numer. Simul. 20 (2015), 559-570. Zbl1303.93012MR3251515DOI
- Jiang, Y., Jiang, Z. P., , Automatica 48 (2012), 2699-2704. MR2961173DOI
- Khalil, H. K., Nonlinear Systems., Third Edition. Prentice-Hallm Upper Saddle River, NJ 2002. Zbl1194.93083
- Kiumarsi, B., Lewis, F. L., , IEEE Trans. Neural Netw. Learn. Syst. 26 (2015), 140-151. MR3449569DOI
- Kreisselmeier, G., 10.1109/TAC.1977.1101401, IEEE Trans. Autom. Control AC-22 (1977), 2-8. MR0444142DOI10.1109/TAC.1977.1101401
- Lewis, F., Jagannathan, S., Yesildirak, A., Neural Network Control of Robot Manipulators and Nonlinear Systems., Taylor and Francis, London 1999.
- Lewis, F. L., Vrabie, D. L., Syrmos, V. L., , Wiley, New York 2012. MR2953185DOI
- Luo, R., Peng, Z., Hu, J., Bijoy, B. K., , In: Proc. IEEE 11th Data Driven Control and Learning Systems Conference (DDCLS), Chengdu 2022, pp. 836-841. DOI
- Lv, Y., Na, J., Yang, Q., Wu, X., Guo, Y., , Int. J. Control 89 (2016), 99-112. MR3433390DOI
- Luo, R., Peng, Z., Hu, J., , Mathematics 11 (2023), 906. DOI
- Makumi, W., Greene, M. L., Bell, Z., Bialy, B., Kamalapurkar, R., Dixon, W., , AIAA SCITECH 2023 Forum,National Harbor, MD and Online, 2023, 1-11. DOI
- Ouyang, Y., Dong, L., Sun, C., , IEEE Trans. Cybern. 52 (2022), 2274-2283. DOI
- Peng, Z., Luo, R., Hu, J., Shi, K., Ghosh, B. K., , IEEE Trans. Circuits Syst. I-Regul. Pap. 69 (2022), 3689-3700. DOI
- Peng, Z., Luo, R., Hu, J., Shi, K., Nguang, S. K., Ghosh, B. K., , IEEE Trans. Neural Netw. Learn. Syst. 33 (2022), 4043-4055. MR4468295DOI
- Peng, Z., Zhao, Y., Hu, J., Luo, R., Ghosh, B. K., Nguang, S. K., , IEEE Trans. Ind. Inform. 17 (2021), 7359-7367. DOI
- Shen, M., Wang, X., Park, J. H., Yi, Y., Che, W.-W., , IEEE Trans. Syst. Man Cybern. Syst. to be published. DOI
- Song, R., Lewis, F., Wei, Q., Zhang, H. G., Jiang, Z. P., Levine, D., , IEEE Trans. Neural Netw. Learn. Syst. 26 (2015), 851-865. MR3452493DOI
- Tabuada, P., , IEEE Trans. Autom. Control 52 (2007), 1680-1685. MR2352444DOI
- Wang, K., Mu, C., , In: Proc. IEEE Conference on Decision and Control (CDC), Jeju 2020, pp. 5200-5205. DOI
- Wang, D., Mu, C., Liu, D., , In: Proc. American Control Conference (ACC), Seattle 2017, pp. 2435-2400. DOI
- Wang, X., Qin, W., Park, J. H., Shen, M., , ISA Trans. 128 (2022), 256-264. DOI
- Werbos, P. J., Approximate dynamic programming for real-time control and neural modeling., In: Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches (D. A. White and D. A. Sofge, Eds.), Van Nostrand Reinhold, New York 1992, ch. 13.
- Xu, N., Niu, B., Wang, H., Huo, X., Zhao, X., , Int. J. Intell. Syst. 36 (2021), 4795-4815. DOI
- Xue, S., Luo, B., Liu, D., Gao, Y., , Int. J. Robust Nonlinear Control 31 (2021), 7480-7497. MR4335306DOI
- Yang, X., He, H., , IEEE Trans. Cybern. 49 (2019), 2255-2267. DOI
- Yang, X., He, H., Liu, D., , IEEE Trans. Syst. Man Cybern. Syst. 49 (2019), 1866-1878. DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.