Event-triggered optimal control of completely unknown nonlinear systems via identifier-critic learning

Zhinan Peng; Zhiquan Zhang; Rui Luo; Yiqun Kuang; Jiangping Hu; Hong Cheng; Bijoy Kumar Ghosh

Kybernetika (2023)

  • Volume: 59, Issue: 3, page 365-391
  • ISSN: 0023-5954

Abstract

top
This paper proposes an online identifier-critic learning framework for event-triggered optimal control of completely unknown nonlinear systems. Unlike classical adaptive dynamic programming (ADP) methods with actor-critic neural networks (NNs), a filter-regression-based approach is developed to reconstruct the unknown system dynamics, and thus avoid the dependence on an accurate system model in the control design loop. Meanwhile, NN adaptive laws are designed for the parameter estimation by using only the measured system state and input data, and facilitate the identifier-critic NN design. The convergence of the adaptive laws is analyzed. Furthermore, in order to reduce state sampling frequency, two kinds of aperiodic sampling schemes, namely static and dynamic event triggers, are embedded into the proposed optimal control design. Finally, simulation results are presented to demonstrate the effectiveness of the proposed event-triggered optimal control strategy.

How to cite

top

Peng, Zhinan, et al. "Event-triggered optimal control of completely unknown nonlinear systems via identifier-critic learning." Kybernetika 59.3 (2023): 365-391. <http://eudml.org/doc/299493>.

@article{Peng2023,
abstract = {This paper proposes an online identifier-critic learning framework for event-triggered optimal control of completely unknown nonlinear systems. Unlike classical adaptive dynamic programming (ADP) methods with actor-critic neural networks (NNs), a filter-regression-based approach is developed to reconstruct the unknown system dynamics, and thus avoid the dependence on an accurate system model in the control design loop. Meanwhile, NN adaptive laws are designed for the parameter estimation by using only the measured system state and input data, and facilitate the identifier-critic NN design. The convergence of the adaptive laws is analyzed. Furthermore, in order to reduce state sampling frequency, two kinds of aperiodic sampling schemes, namely static and dynamic event triggers, are embedded into the proposed optimal control design. Finally, simulation results are presented to demonstrate the effectiveness of the proposed event-triggered optimal control strategy.},
author = {Peng, Zhinan, Zhang, Zhiquan, Luo, Rui, Kuang, Yiqun, Hu, Jiangping, Cheng, Hong, Ghosh, Bijoy Kumar},
journal = {Kybernetika},
keywords = {optimal control; unknown nonlinear system; adaptive dynamic programming; identifier-critic neural networks; event-triggered mechanism},
language = {eng},
number = {3},
pages = {365-391},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Event-triggered optimal control of completely unknown nonlinear systems via identifier-critic learning},
url = {http://eudml.org/doc/299493},
volume = {59},
year = {2023},
}

TY - JOUR
AU - Peng, Zhinan
AU - Zhang, Zhiquan
AU - Luo, Rui
AU - Kuang, Yiqun
AU - Hu, Jiangping
AU - Cheng, Hong
AU - Ghosh, Bijoy Kumar
TI - Event-triggered optimal control of completely unknown nonlinear systems via identifier-critic learning
JO - Kybernetika
PY - 2023
PB - Institute of Information Theory and Automation AS CR
VL - 59
IS - 3
SP - 365
EP - 391
AB - This paper proposes an online identifier-critic learning framework for event-triggered optimal control of completely unknown nonlinear systems. Unlike classical adaptive dynamic programming (ADP) methods with actor-critic neural networks (NNs), a filter-regression-based approach is developed to reconstruct the unknown system dynamics, and thus avoid the dependence on an accurate system model in the control design loop. Meanwhile, NN adaptive laws are designed for the parameter estimation by using only the measured system state and input data, and facilitate the identifier-critic NN design. The convergence of the adaptive laws is analyzed. Furthermore, in order to reduce state sampling frequency, two kinds of aperiodic sampling schemes, namely static and dynamic event triggers, are embedded into the proposed optimal control design. Finally, simulation results are presented to demonstrate the effectiveness of the proposed event-triggered optimal control strategy.
LA - eng
KW - optimal control; unknown nonlinear system; adaptive dynamic programming; identifier-critic neural networks; event-triggered mechanism
UR - http://eudml.org/doc/299493
ER -

References

top
  1. Bhasin, S., Kamalapurkar, R., Johnson, M., Vamvoudakis, K. G., Lewis, F. L., Dixon, W. E., , Automatica 49 (2013), 82-92. MR2999950DOI
  2. Chen, B., Hu, J., Zhao, Y., Ghosh, B. K., , Neurocomputing 481 (2022), 322-332. DOI
  3. Fu, X., Li, Z., , Kybernetika 57 (2021), 546-566. MR4299463DOI
  4. Girard, A., , IEEE Trans. Autom. Control 60 (2015), 1992-1997. MR3365092DOI
  5. Hu, J., Chen, G., Li, H.-X., Distributed event-triggered tracking control of leader-follower multi-agent systems with communication delays., Kybernetika 47 (2011), 630-643. Zbl1227.93008MR2884865
  6. Hu, J., Geng, J., Zhu, H., , Commun. Nonlinear Sci. Numer. Simul. 20 (2015), 559-570. Zbl1303.93012MR3251515DOI
  7. Jiang, Y., Jiang, Z. P., , Automatica 48 (2012), 2699-2704. MR2961173DOI
  8. Khalil, H. K., Nonlinear Systems., Third Edition. Prentice-Hallm Upper Saddle River, NJ 2002. Zbl1194.93083
  9. Kiumarsi, B., Lewis, F. L., , IEEE Trans. Neural Netw. Learn. Syst. 26 (2015), 140-151. MR3449569DOI
  10. Kreisselmeier, G., 10.1109/TAC.1977.1101401, IEEE Trans. Autom. Control AC-22 (1977), 2-8. MR0444142DOI10.1109/TAC.1977.1101401
  11. Lewis, F., Jagannathan, S., Yesildirak, A., Neural Network Control of Robot Manipulators and Nonlinear Systems., Taylor and Francis, London 1999. 
  12. Lewis, F. L., Vrabie, D. L., Syrmos, V. L., , Wiley, New York 2012. MR2953185DOI
  13. Luo, R., Peng, Z., Hu, J., Bijoy, B. K., , In: Proc. IEEE 11th Data Driven Control and Learning Systems Conference (DDCLS), Chengdu 2022, pp. 836-841. DOI
  14. Lv, Y., Na, J., Yang, Q., Wu, X., Guo, Y., , Int. J. Control 89 (2016), 99-112. MR3433390DOI
  15. Luo, R., Peng, Z., Hu, J., , Mathematics 11 (2023), 906. DOI
  16. Makumi, W., Greene, M. L., Bell, Z., Bialy, B., Kamalapurkar, R., Dixon, W., , AIAA SCITECH 2023 Forum,National Harbor, MD and Online, 2023, 1-11. DOI
  17. Ouyang, Y., Dong, L., Sun, C., , IEEE Trans. Cybern. 52 (2022), 2274-2283. DOI
  18. Peng, Z., Luo, R., Hu, J., Shi, K., Ghosh, B. K., , IEEE Trans. Circuits Syst. I-Regul. Pap. 69 (2022), 3689-3700. DOI
  19. Peng, Z., Luo, R., Hu, J., Shi, K., Nguang, S. K., Ghosh, B. K., , IEEE Trans. Neural Netw. Learn. Syst. 33 (2022), 4043-4055. MR4468295DOI
  20. Peng, Z., Zhao, Y., Hu, J., Luo, R., Ghosh, B. K., Nguang, S. K., , IEEE Trans. Ind. Inform. 17 (2021), 7359-7367. DOI
  21. Shen, M., Wang, X., Park, J. H., Yi, Y., Che, W.-W., , IEEE Trans. Syst. Man Cybern. Syst. to be published. DOI
  22. Song, R., Lewis, F., Wei, Q., Zhang, H. G., Jiang, Z. P., Levine, D., , IEEE Trans. Neural Netw. Learn. Syst. 26 (2015), 851-865. MR3452493DOI
  23. Tabuada, P., , IEEE Trans. Autom. Control 52 (2007), 1680-1685. MR2352444DOI
  24. Wang, K., Mu, C., , In: Proc. IEEE Conference on Decision and Control (CDC), Jeju 2020, pp. 5200-5205. DOI
  25. Wang, D., Mu, C., Liu, D., , In: Proc. American Control Conference (ACC), Seattle 2017, pp. 2435-2400. DOI
  26. Wang, X., Qin, W., Park, J. H., Shen, M., , ISA Trans. 128 (2022), 256-264. DOI
  27. Werbos, P. J., Approximate dynamic programming for real-time control and neural modeling., In: Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches (D. A. White and D. A. Sofge, Eds.), Van Nostrand Reinhold, New York 1992, ch. 13. 
  28. Xu, N., Niu, B., Wang, H., Huo, X., Zhao, X., , Int. J. Intell. Syst. 36 (2021), 4795-4815. DOI
  29. Xue, S., Luo, B., Liu, D., Gao, Y., , Int. J. Robust Nonlinear Control 31 (2021), 7480-7497. MR4335306DOI
  30. Yang, X., He, H., , IEEE Trans. Cybern. 49 (2019), 2255-2267. DOI
  31. Yang, X., He, H., Liu, D., , IEEE Trans. Syst. Man Cybern. Syst. 49 (2019), 1866-1878. DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.