Neural network optimal control for nonlinear system based on zero-sum differential game

Fu Xingjian; Li Zizheng

Kybernetika (2021)

  • Volume: 57, Issue: 3, page 546-566
  • ISSN: 0023-5954

Abstract

top
In this paper, for a class of the complex nonlinear system control problems, based on the two-person zero-sum game theory, combined with the idea of approximate dynamic programming(ADP), the constrained optimization control problem is solved for the nonlinear systems with unknown system functions and unknown time-varying disturbances. In order to obtain the approximate optimal solution of the zero-sum game, the multilayer neural network is used to fit the evaluation network, the execution network and the disturbance network of ADP respectively. The Lyapunov stability theory is used to prove the uniform convergence, and the system control output converges to the neighborhood of the target reference value. Finally, the simulation example verifies the effectiveness of the algorithm.

How to cite

top

Xingjian, Fu, and Zizheng, Li. "Neural network optimal control for nonlinear system based on zero-sum differential game." Kybernetika 57.3 (2021): 546-566. <http://eudml.org/doc/298173>.

@article{Xingjian2021,
abstract = {In this paper, for a class of the complex nonlinear system control problems, based on the two-person zero-sum game theory, combined with the idea of approximate dynamic programming(ADP), the constrained optimization control problem is solved for the nonlinear systems with unknown system functions and unknown time-varying disturbances. In order to obtain the approximate optimal solution of the zero-sum game, the multilayer neural network is used to fit the evaluation network, the execution network and the disturbance network of ADP respectively. The Lyapunov stability theory is used to prove the uniform convergence, and the system control output converges to the neighborhood of the target reference value. Finally, the simulation example verifies the effectiveness of the algorithm.},
author = {Xingjian, Fu, Zizheng, Li},
journal = {Kybernetika},
keywords = {zero-sum game; nonlinear system; neural network; approximate dynamic programming},
language = {eng},
number = {3},
pages = {546-566},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Neural network optimal control for nonlinear system based on zero-sum differential game},
url = {http://eudml.org/doc/298173},
volume = {57},
year = {2021},
}

TY - JOUR
AU - Xingjian, Fu
AU - Zizheng, Li
TI - Neural network optimal control for nonlinear system based on zero-sum differential game
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
VL - 57
IS - 3
SP - 546
EP - 566
AB - In this paper, for a class of the complex nonlinear system control problems, based on the two-person zero-sum game theory, combined with the idea of approximate dynamic programming(ADP), the constrained optimization control problem is solved for the nonlinear systems with unknown system functions and unknown time-varying disturbances. In order to obtain the approximate optimal solution of the zero-sum game, the multilayer neural network is used to fit the evaluation network, the execution network and the disturbance network of ADP respectively. The Lyapunov stability theory is used to prove the uniform convergence, and the system control output converges to the neighborhood of the target reference value. Finally, the simulation example verifies the effectiveness of the algorithm.
LA - eng
KW - zero-sum game; nonlinear system; neural network; approximate dynamic programming
UR - http://eudml.org/doc/298173
ER -

References

top
  1. L'Afflitto, A., , IET Control Theory Appl. 11 (2017), 2486-2496. DOI
  2. Bellman, R. E., Dynamic Programming., Princeton University Press, Princeton 1957. Zbl1205.90002
  3. Bian, T., Jiang, Y., Jiang, Z. P., , Automatica 50 (2014), 2624-2632. DOI
  4. Chai, Y., Luo, J.-J., Han, N., Xie, J.-F., Attitude takeover control of failed spacecraft using SDRE based differential game approach., J. Astronaut. 41 (2020), 191-198. 
  5. El-Sousy, F. F. M., Abuhasel, K. A., , IEEE Trans. Industry Appl. 56 (2020), 1940-1952. DOI
  6. Federico, S., Tacconi, E., , SIAM J. Control Optim. 52 (2014), 1203-1236. DOI
  7. Garcia, Y. H., Gonzalez-Hernandez, J., Discrete-time Markov control processes with recursive discount rates., Kybernetika 52 (2016), 403-426. 
  8. Gromov, D., Gromova, E., , Dynamic Games Appl. 7 (2017), 266-288. DOI
  9. Hua, W., Meng, Q., Zhang, J., Differential game guidance law for dual and bounded controlled missiles., J. Bejing Univ. Aeronaut. Astronaut. 42 (2016), 1851-1856. 
  10. Isaacs, R., Differential Games., John Wiley and Sons, New York 1965. 
  11. Krasnosielska-Kobos, A., , Math. Methods Oper. Res. 83 (2016), 53-70. DOI
  12. Lei, L., Yan-Jun, L., Aiqing, Ch., Shaocheng, T., Chen, C. L. P., , Science China Inform. Sci. 63 (2020), 132203. DOI
  13. Lei, L., Yan-Jun, J., Dapeng, L., Shaocheng, T., Zhanshan, W., , IEEE Trans. Cybernet. 50 (2020), 3491-3502. DOI
  14. Li, J.-M., Zhu, H.-N., Nash differential games for delayed nonlinear stochastic systems with state-and control-dependent noise., J. Guangdong Univ. Technol. 35 (2018), 41-45. 
  15. Liu, D. R., Li, H. L., Wang, D., , Neurocomputing 110 (2013), 92-100. DOI
  16. Majid, M., Sani, Seyed Kamal Hosseini, , IEEE/CAA J. Automat. Sinica 5 (2018), 331-341. DOI
  17. Marzieh, M., Karimi, B., Mahootchi, M., , Scientia Iranica 23 (2016), 2391-2406. DOI
  18. Moon, J., , Int. J. Robust Nonlinear Control 29 (2019), 4812-4827. DOI
  19. Mu, C., Wang, K., , Nonlinear Dynamics 95 (2019), 2639-2657. DOI
  20. Nash, J. F., 10.1073/pnas.36.1.48, Proc. Nat. Acad. Sci. USA 36 (1950), 1, 48-49. DOI10.1073/pnas.36.1.48
  21. Nash, J., 10.2307/1969529, Ann. Math. 54 (1951), 286-295. DOI10.2307/1969529
  22. Neumann, J. von, Morgenstern, O., Theory of Games and Economic Behavior., Princeton University Press, Princeton 1944. 
  23. Pham, H., Wei, X., , SIAM J. Control Optim. 55 (2016), 1069-1101. DOI
  24. Qin, Ch., Research on Optimal Control Based on Approximate Dynamic Programming Application in Power System., Doctoral dissertation, Northeastern University 2014. 
  25. Rui-Feng, C., Wei-Dong, L., Li, E. G., , Acta Physica Sinica 67 (2018), 050501. DOI
  26. Song, R., Li, J., Lewis, F. L., , IEEE Trans. Systems Man Cybernet. Systems PP99 (2019), 4009-4019. DOI
  27. Wei, Q., Liu, D., Lin, H., , IEEE Trans Cybernet. 46 (2016), 840-853. DOI
  28. Werbos, P. J., Advances forecasting methods for global crisis warning and models of intelligence., General Systems Yearbook 22 (1977), 25-38. 
  29. Yang, B., Xuesong, C. L., Heuristic dynamic programming based optimal control for multiple time delay systems., J. Theoret. Appl. Inform. Technol. 48 (2013), 876-881. 
  30. Zhang, H., Qin, Ch., Jiang, B., Luo, Y., , IEEE Trans. Cybernet. 44 (2014), 2706-2718. DOI
  31. Zhang, F., Shan, G. S., Gao, H., , J. Medical Imaging Health Inform. 9 (2019), 1382-1385. DOI
  32. Zhu, Q., Liu, Y., Wen, G., , ISA Trans. 101 (2020), 60-68. DOI
  33. Zhu, Q., Wang, K., Shao, Z., , Industr. Engrg. Chem. Res. 59 (2020), 2441-2456. DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.