Neural network optimal control for nonlinear system based on zero-sum differential game
Kybernetika (2021)
- Volume: 57, Issue: 3, page 546-566
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topXingjian, Fu, and Zizheng, Li. "Neural network optimal control for nonlinear system based on zero-sum differential game." Kybernetika 57.3 (2021): 546-566. <http://eudml.org/doc/298173>.
@article{Xingjian2021,
abstract = {In this paper, for a class of the complex nonlinear system control problems, based on the two-person zero-sum game theory, combined with the idea of approximate dynamic programming(ADP), the constrained optimization control problem is solved for the nonlinear systems with unknown system functions and unknown time-varying disturbances. In order to obtain the approximate optimal solution of the zero-sum game, the multilayer neural network is used to fit the evaluation network, the execution network and the disturbance network of ADP respectively. The Lyapunov stability theory is used to prove the uniform convergence, and the system control output converges to the neighborhood of the target reference value. Finally, the simulation example verifies the effectiveness of the algorithm.},
author = {Xingjian, Fu, Zizheng, Li},
journal = {Kybernetika},
keywords = {zero-sum game; nonlinear system; neural network; approximate dynamic programming},
language = {eng},
number = {3},
pages = {546-566},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Neural network optimal control for nonlinear system based on zero-sum differential game},
url = {http://eudml.org/doc/298173},
volume = {57},
year = {2021},
}
TY - JOUR
AU - Xingjian, Fu
AU - Zizheng, Li
TI - Neural network optimal control for nonlinear system based on zero-sum differential game
JO - Kybernetika
PY - 2021
PB - Institute of Information Theory and Automation AS CR
VL - 57
IS - 3
SP - 546
EP - 566
AB - In this paper, for a class of the complex nonlinear system control problems, based on the two-person zero-sum game theory, combined with the idea of approximate dynamic programming(ADP), the constrained optimization control problem is solved for the nonlinear systems with unknown system functions and unknown time-varying disturbances. In order to obtain the approximate optimal solution of the zero-sum game, the multilayer neural network is used to fit the evaluation network, the execution network and the disturbance network of ADP respectively. The Lyapunov stability theory is used to prove the uniform convergence, and the system control output converges to the neighborhood of the target reference value. Finally, the simulation example verifies the effectiveness of the algorithm.
LA - eng
KW - zero-sum game; nonlinear system; neural network; approximate dynamic programming
UR - http://eudml.org/doc/298173
ER -
References
top- L'Afflitto, A., , IET Control Theory Appl. 11 (2017), 2486-2496. DOI
- Bellman, R. E., Dynamic Programming., Princeton University Press, Princeton 1957. Zbl1205.90002
- Bian, T., Jiang, Y., Jiang, Z. P., , Automatica 50 (2014), 2624-2632. DOI
- Chai, Y., Luo, J.-J., Han, N., Xie, J.-F., Attitude takeover control of failed spacecraft using SDRE based differential game approach., J. Astronaut. 41 (2020), 191-198.
- El-Sousy, F. F. M., Abuhasel, K. A., , IEEE Trans. Industry Appl. 56 (2020), 1940-1952. DOI
- Federico, S., Tacconi, E., , SIAM J. Control Optim. 52 (2014), 1203-1236. DOI
- Garcia, Y. H., Gonzalez-Hernandez, J., Discrete-time Markov control processes with recursive discount rates., Kybernetika 52 (2016), 403-426.
- Gromov, D., Gromova, E., , Dynamic Games Appl. 7 (2017), 266-288. DOI
- Hua, W., Meng, Q., Zhang, J., Differential game guidance law for dual and bounded controlled missiles., J. Bejing Univ. Aeronaut. Astronaut. 42 (2016), 1851-1856.
- Isaacs, R., Differential Games., John Wiley and Sons, New York 1965.
- Krasnosielska-Kobos, A., , Math. Methods Oper. Res. 83 (2016), 53-70. DOI
- Lei, L., Yan-Jun, L., Aiqing, Ch., Shaocheng, T., Chen, C. L. P., , Science China Inform. Sci. 63 (2020), 132203. DOI
- Lei, L., Yan-Jun, J., Dapeng, L., Shaocheng, T., Zhanshan, W., , IEEE Trans. Cybernet. 50 (2020), 3491-3502. DOI
- Li, J.-M., Zhu, H.-N., Nash differential games for delayed nonlinear stochastic systems with state-and control-dependent noise., J. Guangdong Univ. Technol. 35 (2018), 41-45.
- Liu, D. R., Li, H. L., Wang, D., , Neurocomputing 110 (2013), 92-100. DOI
- Majid, M., Sani, Seyed Kamal Hosseini, , IEEE/CAA J. Automat. Sinica 5 (2018), 331-341. DOI
- Marzieh, M., Karimi, B., Mahootchi, M., , Scientia Iranica 23 (2016), 2391-2406. DOI
- Moon, J., , Int. J. Robust Nonlinear Control 29 (2019), 4812-4827. DOI
- Mu, C., Wang, K., , Nonlinear Dynamics 95 (2019), 2639-2657. DOI
- Nash, J. F., 10.1073/pnas.36.1.48, Proc. Nat. Acad. Sci. USA 36 (1950), 1, 48-49. DOI10.1073/pnas.36.1.48
- Nash, J., 10.2307/1969529, Ann. Math. 54 (1951), 286-295. DOI10.2307/1969529
- Neumann, J. von, Morgenstern, O., Theory of Games and Economic Behavior., Princeton University Press, Princeton 1944.
- Pham, H., Wei, X., , SIAM J. Control Optim. 55 (2016), 1069-1101. DOI
- Qin, Ch., Research on Optimal Control Based on Approximate Dynamic Programming Application in Power System., Doctoral dissertation, Northeastern University 2014.
- Rui-Feng, C., Wei-Dong, L., Li, E. G., , Acta Physica Sinica 67 (2018), 050501. DOI
- Song, R., Li, J., Lewis, F. L., , IEEE Trans. Systems Man Cybernet. Systems PP99 (2019), 4009-4019. DOI
- Wei, Q., Liu, D., Lin, H., , IEEE Trans Cybernet. 46 (2016), 840-853. DOI
- Werbos, P. J., Advances forecasting methods for global crisis warning and models of intelligence., General Systems Yearbook 22 (1977), 25-38.
- Yang, B., Xuesong, C. L., Heuristic dynamic programming based optimal control for multiple time delay systems., J. Theoret. Appl. Inform. Technol. 48 (2013), 876-881.
- Zhang, H., Qin, Ch., Jiang, B., Luo, Y., , IEEE Trans. Cybernet. 44 (2014), 2706-2718. DOI
- Zhang, F., Shan, G. S., Gao, H., , J. Medical Imaging Health Inform. 9 (2019), 1382-1385. DOI
- Zhu, Q., Liu, Y., Wen, G., , ISA Trans. 101 (2020), 60-68. DOI
- Zhu, Q., Wang, K., Shao, Z., , Industr. Engrg. Chem. Res. 59 (2020), 2441-2456. DOI
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.