1-planar graphs with girth at least 6 are (1,1,1,1)-colorable
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 4, page 993-1006
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSong, Lili, and Sun, Lei. "1-planar graphs with girth at least 6 are (1,1,1,1)-colorable." Czechoslovak Mathematical Journal 73.4 (2023): 993-1006. <http://eudml.org/doc/299500>.
@article{Song2023,
abstract = {A graph is 1-planar if it can be drawn in the Euclidean plane so that each edge is crossed by at most one other edge. A 1-planar graph on $n$ vertices is optimal if it has $4n-8$ edges. We prove that 1-planar graphs with girth at least 6 are (1,1,1,1)-colorable (in the sense that each of the four color classes induces a subgraph of maximum degree one). Inspired by the decomposition of 1-planar graphs, we conjecture that every 1-planar graph is (2,2,2,0,0)-colorable.},
author = {Song, Lili, Sun, Lei},
journal = {Czechoslovak Mathematical Journal},
keywords = {1-planar graph; discharging},
language = {eng},
number = {4},
pages = {993-1006},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {1-planar graphs with girth at least 6 are (1,1,1,1)-colorable},
url = {http://eudml.org/doc/299500},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Song, Lili
AU - Sun, Lei
TI - 1-planar graphs with girth at least 6 are (1,1,1,1)-colorable
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 4
SP - 993
EP - 1006
AB - A graph is 1-planar if it can be drawn in the Euclidean plane so that each edge is crossed by at most one other edge. A 1-planar graph on $n$ vertices is optimal if it has $4n-8$ edges. We prove that 1-planar graphs with girth at least 6 are (1,1,1,1)-colorable (in the sense that each of the four color classes induces a subgraph of maximum degree one). Inspired by the decomposition of 1-planar graphs, we conjecture that every 1-planar graph is (2,2,2,0,0)-colorable.
LA - eng
KW - 1-planar graph; discharging
UR - http://eudml.org/doc/299500
ER -
References
top- Appel, K., Haken, W., 10.1215/ijm/1256049898, Ill. J. Math. 20 (1976), 218-297. (1976) Zbl0322.05141MR0392641DOI10.1215/ijm/1256049898
- Appel, K., Haken, W., 10.1215/ijm/1256049011, Ill. J. Math. 21 (1977), 429-490. (1977) Zbl0387.05009MR0543795DOI10.1215/ijm/1256049011
- Appel, K., Haken, W., Koch, J., 10.1215/ijm/1256049012, Ill. J. Math. 21 (1977), 491-567. (1977) Zbl0387.05010MR0543793DOI10.1215/ijm/1256049012
- Bollobás, B., 10.1007/978-1-4612-0619-4, Graduate Texts in Mathematics 184. Springer, New York (1998). (1998) Zbl0902.05016MR1633290DOI10.1007/978-1-4612-0619-4
- Borodin, O. V., Solution of Ringel's problems concerning the vertex-faced coloring of planar graphs and the coloring of 1-planar graphs, Metody Diskretn. Anal. 41 (1984), 12-26 Russian. (1984) Zbl0565.05027MR0832128
- Borodin, O. V., 10.1016/j.disc.2012.11.011, Discrete Math. 313 (2013), 517-539. (2013) Zbl1259.05042MR3004485DOI10.1016/j.disc.2012.11.011
- Bu, Y., Fu, C., 10.1016/j.disc.2013.08.005, Discrete Math. 313 (2013), 2737-2741. (2013) Zbl1280.05038MR3106445DOI10.1016/j.disc.2013.08.005
- Chu, Y., Sun, L., 1-planar graphs with girth at least 7 are (1,1,1,0)-colorable, J. Math. Res. Appl. 36 (2016), 643-650. (2016) Zbl1374.05068MR3586296
- Cohen-Addad, V., Hebdige, M., Krá, D., Li, Z., Salgado, E., 10.1016/j.jctb.2016.07.006, J. Comb. Theory, Ser. B 122 (2017), 452-456. (2017) Zbl1350.05018MR3575214DOI10.1016/j.jctb.2016.07.006
- Cowen, L. J., Cowen, R. H., Woodall, D. R., 10.1002/jgt.3190100207, J. Graph Theory 10 (1986), 187-195. (1986) Zbl0596.05024MR0890224DOI10.1002/jgt.3190100207
- Fabrici, I., Madaras, T., 10.1016/j.disc.2005.11.056, Discrete Math. 307 (2007), 854-865. (2007) Zbl1111.05026MR2297168DOI10.1016/j.disc.2005.11.056
- Hill, O., Smith, D., Wang, Y., Xu, L., Yu, G., 10.1016/j.disc.2013.06.009, Discrete Math. 313 (2013), 2312-2317. (2013) Zbl1281.05055MR3084277DOI10.1016/j.disc.2013.06.009
- Hudák, D., Madaras, T., 10.7151/dmgt.1454, Discuss. Math., Graph Theory 29 (2009), 385-400. (2009) Zbl1194.05025MR2574477DOI10.7151/dmgt.1454
- Ringel, G., 10.1007/BF02996313, Abh. Math. Semin. Univ. Hamb. 29 (1965), 107-117 German. (1965) Zbl0132.20701MR0187232DOI10.1007/BF02996313
- Song, L., Sun, L., Every 1-planar graph without 4-cycles and adjacent 5-vertices is 5-colorable, Ars Comb. 135 (2017), 29-38. (2017) Zbl1463.05193MR3702243
- Song, L., Sun, L., 10.1007/s10255-022-1073-9, Acta Math. Appl. Sin., Engl. Ser. 38 (2022), 169-177. (2022) Zbl1484.05078MR4375781DOI10.1007/s10255-022-1073-9
- Steinberg, R., 10.1007/BF01390010, Invent. Math. 36 (1976), 209-224. (1976) Zbl0352.20035MR0430094DOI10.1007/BF01390010
- Sun, L., Wu, J. L., Cai, H., 10.1007/s10114-016-5480-9, Acta Math. Sin., Engl. Ser. 32 (2016), 1337-1349. (2016) Zbl1359.05047MR3557401DOI10.1007/s10114-016-5480-9
- Wang, Y., Yang, Y., 10.1016/j.disc.2014.03.001, Discrete Math. 326 (2014), 44-49. (2014) Zbl1288.05105MR3188986DOI10.1016/j.disc.2014.03.001
- West, D. B., Introduction to Graph Theory, Prentice Hall, Upper Saddle River (1996). (1996) Zbl0845.05001MR1367739
- Zhang, X., Liu, G., 10.1016/j.ipl.2011.10.021, Inf. Process. Lett. 112 (2012), 138-142. (2012) Zbl1239.05078MR2876230DOI10.1016/j.ipl.2011.10.021
- Zhang, X., Liu, G., On edge colorings of 1-planar graphs without chordal 5-cycles, Ars Comb. 104 (2012), 431-436. (2012) Zbl1274.05186MR2951804
- Zhang, X., Wu, J., 10.1016/j.ipl.2010.11.001, Inf. Process. Lett. 111 (2011), 124-128. (2011) Zbl1259.05050MR2779909DOI10.1016/j.ipl.2010.11.001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.