The lattice of ideals of a numerical semigroup and its Frobenius restricted variety associated
Maria Angeles Moreno-Frías; José Carlos Rosales
Mathematica Bohemica (2024)
- Volume: 149, Issue: 3, page 439-454
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMoreno-Frías, Maria Angeles, and Rosales, José Carlos. "The lattice of ideals of a numerical semigroup and its Frobenius restricted variety associated." Mathematica Bohemica 149.3 (2024): 439-454. <http://eudml.org/doc/299503>.
@article{Moreno2024,
abstract = {Let $\Delta $ be a numerical semigroup. In this work we show that $\mathcal \{J\}(\Delta ) =\lbrace I\cup \lbrace 0\rbrace \colon I \mbox\{ is an ideal of \} \Delta \rbrace $ is a distributive lattice, which in addition is a Frobenius restricted variety. We give an algorithm which allows us to compute the set $\mathcal \{J\}_a(\Delta )=\lbrace S\in \mathcal \{J\}(\Delta )\colon \max (\Delta \backslash S)=a\rbrace $ for a given $a\in \Delta .$ As a consequence, we obtain another algorithm that computes all the elements of $\mathcal \{J\}(\Delta )$ with a fixed genus.},
author = {Moreno-Frías, Maria Angeles, Rosales, José Carlos},
journal = {Mathematica Bohemica},
keywords = {numerical semigroup; ideal; Frobenius restricted variety; embedding dimension; Frobenius number; restricted Frobenius number; genus; multiplicity; Arf numerical semigroup; saturated semigroup},
language = {eng},
number = {3},
pages = {439-454},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The lattice of ideals of a numerical semigroup and its Frobenius restricted variety associated},
url = {http://eudml.org/doc/299503},
volume = {149},
year = {2024},
}
TY - JOUR
AU - Moreno-Frías, Maria Angeles
AU - Rosales, José Carlos
TI - The lattice of ideals of a numerical semigroup and its Frobenius restricted variety associated
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 3
SP - 439
EP - 454
AB - Let $\Delta $ be a numerical semigroup. In this work we show that $\mathcal {J}(\Delta ) =\lbrace I\cup \lbrace 0\rbrace \colon I \mbox{ is an ideal of } \Delta \rbrace $ is a distributive lattice, which in addition is a Frobenius restricted variety. We give an algorithm which allows us to compute the set $\mathcal {J}_a(\Delta )=\lbrace S\in \mathcal {J}(\Delta )\colon \max (\Delta \backslash S)=a\rbrace $ for a given $a\in \Delta .$ As a consequence, we obtain another algorithm that computes all the elements of $\mathcal {J}(\Delta )$ with a fixed genus.
LA - eng
KW - numerical semigroup; ideal; Frobenius restricted variety; embedding dimension; Frobenius number; restricted Frobenius number; genus; multiplicity; Arf numerical semigroup; saturated semigroup
UR - http://eudml.org/doc/299503
ER -
References
top- Arf, C., 10.1112/plms/s2-50.4.256, Proc. Lond. Math. Soc., II. Ser. 50 (1948), 256-287 French. (1948) Zbl0031.07002MR0031785DOI10.1112/plms/s2-50.4.256
- Barucci, V., 10.1216/JCA-2010-2-3-281, J. Commut. Algebra 2 (2010), 281-294. (2010) Zbl1237.20056MR2728145DOI10.1216/JCA-2010-2-3-281
- Barucci, V., Dobbs, D. E., Fontana, M., Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analitycally Irreducible Local Domains, Memoirs of the American Mathematical Society 598. AMS, Providence (1997),9999DOI99999 10.1090/memo/0598 . (1997) Zbl0868.13003MR1357822
- Campillo, A., 10.1090/pspum/040.1, Singularities. Part 1 Proceedings of Symposia in Pure Mathematics 40. AMS, Providence (1983), 211-220. (1983) Zbl0553.14013MR0713060DOI10.1090/pspum/040.1
- Mata, F. Delgado de la, Jiménez, C. A. Núñez, Monomial rings and saturated rings, Géométrie algébrique et applications I Travaux en Cours 22. Hermann, Paris (1987), 23-34. (1987) Zbl0636.14009MR0907904
- Lipman, J., 10.2307/2373463, Am. J. Math. 93 (1971), 649-685. (1971) Zbl0228.13008MR0282969DOI10.2307/2373463
- Moreno-Frías, M. A., Rosales, J. C., 10.1142/S0219498823300027, J. Algebra Appl. 22 (2023), Article ID 2330002, 21 pages. (2023) Zbl07709969MR4598665DOI10.1142/S0219498823300027
- Núñez, A., 10.1016/0022-4049(89)90135-7, J. Pure Appl. Algebra 59 (1989), 201-214. (1989) Zbl0701.14026MR1007922DOI10.1016/0022-4049(89)90135-7
- Pham, F., Fractions lipschitziennes et saturations de Zariski des algèbres analytiques complexes, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2 Gautier-Villars, Paris (1971), 649-654 French. (1971) Zbl0245.32003MR0590058
- Robles-Pérez, A. M., Rosales, J. C., 10.1007/s00233-018-9949-y, Semigroup Forum 97 (2018), 478-492. (2018) Zbl1448.20050MR3881853DOI10.1007/s00233-018-9949-y
- Rosales, J. C., 10.36045/bbms/1063372340, Bull. Belg. Math. Soc. - Simon Stevin 10 (2003), 329-343. (2003) Zbl1051.20026MR2016807DOI10.36045/bbms/1063372340
- Rosales, J. C., García-Sánchez, P. A., 10.1007/978-1-4419-0160-6, Developments in Mathematics 20. Springer, New York (2009). (2009) Zbl1220.20047MR2549780DOI10.1007/978-1-4419-0160-6
- Zariski, O., 10.2307/2373462, Am. J. Math. 93 (1971), 573-684. (1971) Zbl0226.13013MR0282972DOI10.2307/2373462
- Zariski, O., General theory of saturation and of saturated local rings II. Saturated local rings of dimension 1, Am. J. Math. 93 (1971), 872-964 9999DOI99999 10.2307/2373741 . (1971) Zbl0228.13007MR0299607
- Zariski, O., 10.2307/2373720, Am. J. Math. 97 (1975), 415-502. (1975) Zbl0306.13009MR0389893DOI10.2307/2373720
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.