The lattice of ideals of a numerical semigroup and its Frobenius restricted variety associated

Maria Angeles Moreno-Frías; José Carlos Rosales

Mathematica Bohemica (2024)

  • Volume: 149, Issue: 3, page 439-454
  • ISSN: 0862-7959

Abstract

top
Let Δ be a numerical semigroup. In this work we show that 𝒥 ( Δ ) = { I { 0 } : I is an ideal of Δ } is a distributive lattice, which in addition is a Frobenius restricted variety. We give an algorithm which allows us to compute the set 𝒥 a ( Δ ) = { S 𝒥 ( Δ ) : max ( Δ S ) = a } for a given a Δ . As a consequence, we obtain another algorithm that computes all the elements of 𝒥 ( Δ ) with a fixed genus.

How to cite

top

Moreno-Frías, Maria Angeles, and Rosales, José Carlos. "The lattice of ideals of a numerical semigroup and its Frobenius restricted variety associated." Mathematica Bohemica 149.3 (2024): 439-454. <http://eudml.org/doc/299503>.

@article{Moreno2024,
abstract = {Let $\Delta $ be a numerical semigroup. In this work we show that $\mathcal \{J\}(\Delta ) =\lbrace I\cup \lbrace 0\rbrace \colon I \mbox\{ is an ideal of \} \Delta \rbrace $ is a distributive lattice, which in addition is a Frobenius restricted variety. We give an algorithm which allows us to compute the set $\mathcal \{J\}_a(\Delta )=\lbrace S\in \mathcal \{J\}(\Delta )\colon \max (\Delta \backslash S)=a\rbrace $ for a given $a\in \Delta .$ As a consequence, we obtain another algorithm that computes all the elements of $\mathcal \{J\}(\Delta )$ with a fixed genus.},
author = {Moreno-Frías, Maria Angeles, Rosales, José Carlos},
journal = {Mathematica Bohemica},
keywords = {numerical semigroup; ideal; Frobenius restricted variety; embedding dimension; Frobenius number; restricted Frobenius number; genus; multiplicity; Arf numerical semigroup; saturated semigroup},
language = {eng},
number = {3},
pages = {439-454},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The lattice of ideals of a numerical semigroup and its Frobenius restricted variety associated},
url = {http://eudml.org/doc/299503},
volume = {149},
year = {2024},
}

TY - JOUR
AU - Moreno-Frías, Maria Angeles
AU - Rosales, José Carlos
TI - The lattice of ideals of a numerical semigroup and its Frobenius restricted variety associated
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 3
SP - 439
EP - 454
AB - Let $\Delta $ be a numerical semigroup. In this work we show that $\mathcal {J}(\Delta ) =\lbrace I\cup \lbrace 0\rbrace \colon I \mbox{ is an ideal of } \Delta \rbrace $ is a distributive lattice, which in addition is a Frobenius restricted variety. We give an algorithm which allows us to compute the set $\mathcal {J}_a(\Delta )=\lbrace S\in \mathcal {J}(\Delta )\colon \max (\Delta \backslash S)=a\rbrace $ for a given $a\in \Delta .$ As a consequence, we obtain another algorithm that computes all the elements of $\mathcal {J}(\Delta )$ with a fixed genus.
LA - eng
KW - numerical semigroup; ideal; Frobenius restricted variety; embedding dimension; Frobenius number; restricted Frobenius number; genus; multiplicity; Arf numerical semigroup; saturated semigroup
UR - http://eudml.org/doc/299503
ER -

References

top
  1. Arf, C., 10.1112/plms/s2-50.4.256, Proc. Lond. Math. Soc., II. Ser. 50 (1948), 256-287 French. (1948) Zbl0031.07002MR0031785DOI10.1112/plms/s2-50.4.256
  2. Barucci, V., 10.1216/JCA-2010-2-3-281, J. Commut. Algebra 2 (2010), 281-294. (2010) Zbl1237.20056MR2728145DOI10.1216/JCA-2010-2-3-281
  3. Barucci, V., Dobbs, D. E., Fontana, M., Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analitycally Irreducible Local Domains, Memoirs of the American Mathematical Society 598. AMS, Providence (1997),9999DOI99999 10.1090/memo/0598 . (1997) Zbl0868.13003MR1357822
  4. Campillo, A., 10.1090/pspum/040.1, Singularities. Part 1 Proceedings of Symposia in Pure Mathematics 40. AMS, Providence (1983), 211-220. (1983) Zbl0553.14013MR0713060DOI10.1090/pspum/040.1
  5. Mata, F. Delgado de la, Jiménez, C. A. Núñez, Monomial rings and saturated rings, Géométrie algébrique et applications I Travaux en Cours 22. Hermann, Paris (1987), 23-34. (1987) Zbl0636.14009MR0907904
  6. Lipman, J., 10.2307/2373463, Am. J. Math. 93 (1971), 649-685. (1971) Zbl0228.13008MR0282969DOI10.2307/2373463
  7. Moreno-Frías, M. A., Rosales, J. C., 10.1142/S0219498823300027, J. Algebra Appl. 22 (2023), Article ID 2330002, 21 pages. (2023) Zbl07709969MR4598665DOI10.1142/S0219498823300027
  8. Núñez, A., 10.1016/0022-4049(89)90135-7, J. Pure Appl. Algebra 59 (1989), 201-214. (1989) Zbl0701.14026MR1007922DOI10.1016/0022-4049(89)90135-7
  9. Pham, F., Fractions lipschitziennes et saturations de Zariski des algèbres analytiques complexes, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2 Gautier-Villars, Paris (1971), 649-654 French. (1971) Zbl0245.32003MR0590058
  10. Robles-Pérez, A. M., Rosales, J. C., 10.1007/s00233-018-9949-y, Semigroup Forum 97 (2018), 478-492. (2018) Zbl1448.20050MR3881853DOI10.1007/s00233-018-9949-y
  11. Rosales, J. C., 10.36045/bbms/1063372340, Bull. Belg. Math. Soc. - Simon Stevin 10 (2003), 329-343. (2003) Zbl1051.20026MR2016807DOI10.36045/bbms/1063372340
  12. Rosales, J. C., García-Sánchez, P. A., 10.1007/978-1-4419-0160-6, Developments in Mathematics 20. Springer, New York (2009). (2009) Zbl1220.20047MR2549780DOI10.1007/978-1-4419-0160-6
  13. Zariski, O., 10.2307/2373462, Am. J. Math. 93 (1971), 573-684. (1971) Zbl0226.13013MR0282972DOI10.2307/2373462
  14. Zariski, O., General theory of saturation and of saturated local rings II. Saturated local rings of dimension 1, Am. J. Math. 93 (1971), 872-964 9999DOI99999 10.2307/2373741 . (1971) Zbl0228.13007MR0299607
  15. Zariski, O., 10.2307/2373720, Am. J. Math. 97 (1975), 415-502. (1975) Zbl0306.13009MR0389893DOI10.2307/2373720

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.