Displaying similar documents to “The lattice of ideals of a numerical semigroup and its Frobenius restricted variety associated”

Explicit cogenerators for the homotopy category of projective modules over a ring

Amnon Neeman (2011)

Annales scientifiques de l'École Normale Supérieure

Similarity:

Let R be a ring. In two previous articles [12, 14] we studied the homotopy category 𝐊 ( R - Proj ) of projective R -modules. We produced a set of generators for this category, proved that the category is 1 -compactly generated for any ring R , and showed that it need not always be compactly generated, but is for sufficiently nice R . We furthermore analyzed the inclusion j ! : 𝐊 ( R - Proj ) 𝐊 ( R - Flat ) and the orthogonal subcategory 𝒮 = 𝐊 ( R - Proj ) . And we even showed that the inclusion 𝒮 𝐊 ( R - Flat ) has a right adjoint; this forces some natural map to be...

The tangent function and power residues modulo primes

Zhi-Wei Sun (2023)

Czechoslovak Mathematical Journal

Similarity:

Let p be an odd prime, and let a be an integer not divisible by p . When m is a positive integer with p 1 ( mod 2 m ) and 2 is an m th power residue modulo p , we determine the value of the product k R m ( p ) ( 1 + tan ( π a k / p ) ) , where R m ( p ) = { 0 < k < p : k is an m th power residue modulo p } . In particular, if p = x 2 + 64 y 2 with x , y , then k R 4 ( p ) 1 + tan π a k p = ( - 1 ) y ( - 2 ) ( p - 1 ) / 8 .

The covariety of perfect numerical semigroups with fixed Frobenius number

María Ángeles Moreno-Frías, José Carlos Rosales (2024)

Czechoslovak Mathematical Journal

Similarity:

Let S be a numerical semigroup. We say that h S is an isolated gap of S if { h - 1 , h + 1 } S . A numerical semigroup without isolated gaps is called a perfect numerical semigroup. Denote by m ( S ) the multiplicity of a numerical semigroup S . A covariety is a nonempty family 𝒞 of numerical semigroups that fulfills the following conditions: there exists the minimum of 𝒞 , the intersection of two elements of 𝒞 is again an element of 𝒞 , and S { m ( S ) } 𝒞 for all S 𝒞 such that S min ( 𝒞 ) . We prove that the set 𝒫 ( F ) = { S : S is a perfect numerical semigroup...

On a sequence formed by iterating a divisor operator

Bellaouar Djamel, Boudaoud Abdelmadjid, Özen Özer (2019)

Czechoslovak Mathematical Journal

Similarity:

Let be the set of positive integers and let s . We denote by d s the arithmetic function given by d s ( n ) = ( d ( n ) ) s , where d ( n ) is the number of positive divisors of n . Moreover, for every , m we denote by δ s , , m ( n ) the sequence d s ( d s ( ... d s ( d s ( n ) + ) + ... ) + ) m -times = d s ( n ) for m = 1 , d s ( d s ( n ) + ) for m = 2 , d s ( d s ( d s ( n ) + ) + ) for m = 3 , We present classical and nonclassical notes on the sequence ( δ s , , m ( n ) ) m 1 , where , n , s are understood as parameters.

On Kneser solutions of the n -th order nonlinear differential inclusions

Martina Pavlačková (2019)

Czechoslovak Mathematical Journal

Similarity:

The paper deals with the existence of a Kneser solution of the n -th order nonlinear differential inclusion x ( n ) ( t ) - A 1 ( t , x ( t ) , ... , x ( n - 1 ) ( t ) ) x ( n - 1 ) ( t ) - ... - A n ( t , x ( t ) , ... , x ( n - 1 ) ( t ) ) x ( t ) for a.a. t [ a , ) , where a ( 0 , ) , and A i : [ a , ) × n , i = 1 , ... , n , are upper-Carathéodory mappings. The derived result is finally illustrated by the third order Kneser problem.

Green's generic syzygy conjecture for curves of even genus lying on a K3 surface

Claire Voisin (2002)

Journal of the European Mathematical Society

Similarity:

We consider the generic Green conjecture on syzygies of a canonical curve, and particularly the following reformulation thereof: For a smooth projective curve C of genus g in characteristic 0, the condition Cliff C > l is equivalent to the fact that K g - l ' - 2 , 1 ( C , K C ) = 0 , l ' l . We propose a new approach, which allows up to prove this result for generic curves C of genus g ( C ) and gonality gon(C) in the range g ( C ) 3 + 1 gon(C) g ( C ) 2 + 1 .

Persistence of Coron’s solution in nearly critical problems

Monica Musso, Angela Pistoia (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We consider the problem - Δ u = u N + 2 N - 2 + λ in Ω ε ω , u &gt; 0 in Ω ε ω , u = 0 on Ω ε ω , where Ω and ω are smooth bounded domains in N , N 3 , ε &gt; 0 and λ . We prove that if the size of the hole ε goes to zero and if, simultaneously, the parameter λ goes to zero at the appropriate rate, then the problem has a solution which blows up at the origin.

Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation

Jacques Giacomoni, Ian Schindler, Peter Takáč (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We investigate the following quasilinear and singular problem, t o 2 . 7 c m - Δ p u = λ u δ + u q in Ω ; u | Ω = 0 , u &gt; 0 in Ω , t o 2 . 7 c m (P) where Ω is an open bounded domain with smooth boundary, 1 &lt; p &lt; , p - 1 &lt; q p * - 1 , λ &gt; 0 , and 0 &lt; δ &lt; 1 . As usual, p * = N p N - p if 1 &lt; p &lt; N , p * ( p , ) is arbitrarily large if p = N , and p * = if p &gt; N . We employ variational methods in order to show the existence of at least two distinct (positive) solutions of problem (P) in W 0 1 , p ( Ω ) . While following an approach due to Ambrosetti-Brezis-Cerami, we need to prove two new results of separate interest: a strong comparison principle...

Traceability in { K 1 , 4 , K 1 , 4 + e } -free graphs

Wei Zheng, Ligong Wang (2019)

Czechoslovak Mathematical Journal

Similarity:

A graph G is called { H 1 , H 2 , , H k } -free if G contains no induced subgraph isomorphic to any graph H i , 1 i k . We define σ k = min i = 1 k d ( v i ) : { v 1 , , v k } is an independent set of vertices in G . In this paper, we prove that (1) if G is a connected { K 1 , 4 , K 1 , 4 + e } -free graph of order n and σ 3 ( G ) n - 1 , then G is traceable, (2) if G is a 2-connected { K 1 , 4 , K 1 , 4 + e } -free graph of order n and | N ( x 1 ) N ( x 2 ) | + | N ( y 1 ) N ( y 2 ) | n - 1 for any two distinct pairs of non-adjacent vertices { x 1 , x 2 } , { y 1 , y 2 } of G , then G is traceable, i.e., G has a Hamilton path, where K 1 , 4 + e is a graph obtained by joining a pair of non-adjacent vertices in a K 1 , 4 .

Integrability for very weak solutions to boundary value problems of p -harmonic equation

Hongya Gao, Shuang Liang, Yi Cui (2016)

Czechoslovak Mathematical Journal

Similarity:

The paper deals with very weak solutions u θ + W 0 1 , r ( Ω ) , max { 1 , p - 1 } < r < p < n , to boundary value problems of the p -harmonic equation - div ( | u ( x ) | p - 2 u ( x ) ) = 0 , x Ω , u ( x ) = θ ( x ) , x Ω . ( * ) We show that, under the assumption θ W 1 , q ( Ω ) , q > r , any very weak solution u to the boundary value problem ( * ) is integrable with u θ + L weak q * ( Ω ) for q < n , θ + L weak τ ( Ω ) for q = n and any τ < , θ + L ( Ω ) for q > n , provided that r is sufficiently close to p .

On the Anderson-Badawi ω R [ X ] ( I [ X ] ) = ω R ( I ) conjecture

Peyman Nasehpour (2016)

Archivum Mathematicum

Similarity:

Let R be a commutative ring with an identity different from zero and n be a positive integer. Anderson and Badawi, in their paper on n -absorbing ideals, define a proper ideal I of a commutative ring R to be an n -absorbing ideal of R , if whenever x 1 x n + 1 I for x 1 , ... , x n + 1 R , then there are n of the x i ’s whose product is in I and conjecture that ω R [ X ] ( I [ X ] ) = ω R ( I ) for any ideal I of an arbitrary ring R , where ω R ( I ) = min { n : I is an n -absorbing ideal of R } . In the present paper, we use content formula techniques to prove that their conjecture is true, if one of the following...