On the irreducible factors of a polynomial over a valued field
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 2, page 367-375
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topJakhar, Anuj. "On the irreducible factors of a polynomial over a valued field." Czechoslovak Mathematical Journal 74.2 (2024): 367-375. <http://eudml.org/doc/299509>.
@article{Jakhar2024,
abstract = {We explicitly provide numbers $d$, $e$ such that each irreducible factor of a polynomial $f(x)$ with integer coefficients has a degree greater than or equal to $d$ and $f(x)$ can have at most $e$ irreducible factors over the field of rational numbers. Moreover, we prove our result in a more general setup for polynomials with coefficients from the valuation ring of an arbitrary valued field.},
author = {Jakhar, Anuj},
journal = {Czechoslovak Mathematical Journal},
keywords = {irreducibility; Eisenstein criterion; polynomial},
language = {eng},
number = {2},
pages = {367-375},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the irreducible factors of a polynomial over a valued field},
url = {http://eudml.org/doc/299509},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Jakhar, Anuj
TI - On the irreducible factors of a polynomial over a valued field
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 367
EP - 375
AB - We explicitly provide numbers $d$, $e$ such that each irreducible factor of a polynomial $f(x)$ with integer coefficients has a degree greater than or equal to $d$ and $f(x)$ can have at most $e$ irreducible factors over the field of rational numbers. Moreover, we prove our result in a more general setup for polynomials with coefficients from the valuation ring of an arbitrary valued field.
LA - eng
KW - irreducibility; Eisenstein criterion; polynomial
UR - http://eudml.org/doc/299509
ER -
References
top- Alexandru, V., Popescu, N., Zaharescu, A., 10.1215/kjm/1250520346, J. Math. Kyoto Univ. 28 (1988), 579-592. (1988) Zbl0689.12017MR0981094DOI10.1215/kjm/1250520346
- Dumas, G., Sur quelques cas d'irréductibilité des polynomes á coefficients rationnels, J. Math. Pures Appl. 6 (1906), 191-258 French 9999JFM99999 37.0096.01. (1906)
- Eisenstein, G., 10.1515/crll.1850.39.160, J. Reine Angew. Math. 39 (1850), 160-179 German. (1850) MR1578663DOI10.1515/crll.1850.39.160
- Engler, A. J., Prestel, A., 10.1007/3-540-30035-X, Springer Monographs in Mathematics. Springer, New York (2005). (2005) Zbl1128.12009MR2183496DOI10.1007/3-540-30035-X
- Girstmair, K., 10.1080/00029890.2005.11920194, Am. Math. Mon. 112 (2005), 269-270. (2005) Zbl1077.11017MR2125390DOI10.1080/00029890.2005.11920194
- Gouvêa, F. Q., 10.1007/978-3-030-47295-5, Springer, New York (2003). (2003) Zbl1436.11001MR4175370DOI10.1007/978-3-030-47295-5
- Jakhar, A., 10.1112/blms.12315, Bull. Lond. Math. Soc. 52 (2020), 158-160. (2020) Zbl1455.11144MR4072040DOI10.1112/blms.12315
- Jakhar, A., 10.1090/proc/14856, Proc. Am. Math. Soc. 148 (2020), 1429-1437. (2020) Zbl1446.12004MR4069182DOI10.1090/proc/14856
- Jakhar, A., Srinivas, K., 10.1016/j.jalgebra.2020.02.045, J. Algebra 556 (2020), 649-655. (2020) Zbl1443.12002MR4088446DOI10.1016/j.jalgebra.2020.02.045
- Jhorar, B., Khanduja, S. K., 10.1007/s00229-016-0829-z, Manuscr. Math. 151 (2016), 223-241. (2016) Zbl1351.12002MR3532244DOI10.1007/s00229-016-0829-z
- Khanduja, S. K., Kumar, M., 10.1007/s00229-009-0320-1, Manuscr. Math. 131 (2010), 323-334. (2010) Zbl1216.12007MR2592083DOI10.1007/s00229-009-0320-1
- Murty, M. Ram, 10.1080/00029890.2002.11919872, Am. Math. Mon. 109 (2002), 452-458. (2002) Zbl1053.11020MR1901498DOI10.1080/00029890.2002.11919872
- Schönemann, T., 10.1515/crll.1846.32.93, J. Reine Angew. Math. 32 (1846), 93-105 German. (1846) MR1578516DOI10.1515/crll.1846.32.93
- Weintraub, S. H., 10.1090/S0002-9939-2012-10880-9, Proc. Am. Math. Soc. 141 (2013), 1159-1160. (2013) Zbl1271.12001MR3008863DOI10.1090/S0002-9939-2012-10880-9
- Weintraub, S. H., 10.1090/proc/13033, Proc. Am. Math. Soc. 144 (2016), 3331-3332. (2016) Zbl1390.12001MR3503701DOI10.1090/proc/13033
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.