On the irreducible factors of a polynomial over a valued field

Anuj Jakhar

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 2, page 367-375
  • ISSN: 0011-4642

Abstract

top
We explicitly provide numbers d , e such that each irreducible factor of a polynomial f ( x ) with integer coefficients has a degree greater than or equal to d and f ( x ) can have at most e irreducible factors over the field of rational numbers. Moreover, we prove our result in a more general setup for polynomials with coefficients from the valuation ring of an arbitrary valued field.

How to cite

top

Jakhar, Anuj. "On the irreducible factors of a polynomial over a valued field." Czechoslovak Mathematical Journal 74.2 (2024): 367-375. <http://eudml.org/doc/299509>.

@article{Jakhar2024,
abstract = {We explicitly provide numbers $d$, $e$ such that each irreducible factor of a polynomial $f(x)$ with integer coefficients has a degree greater than or equal to $d$ and $f(x)$ can have at most $e$ irreducible factors over the field of rational numbers. Moreover, we prove our result in a more general setup for polynomials with coefficients from the valuation ring of an arbitrary valued field.},
author = {Jakhar, Anuj},
journal = {Czechoslovak Mathematical Journal},
keywords = {irreducibility; Eisenstein criterion; polynomial},
language = {eng},
number = {2},
pages = {367-375},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the irreducible factors of a polynomial over a valued field},
url = {http://eudml.org/doc/299509},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Jakhar, Anuj
TI - On the irreducible factors of a polynomial over a valued field
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 367
EP - 375
AB - We explicitly provide numbers $d$, $e$ such that each irreducible factor of a polynomial $f(x)$ with integer coefficients has a degree greater than or equal to $d$ and $f(x)$ can have at most $e$ irreducible factors over the field of rational numbers. Moreover, we prove our result in a more general setup for polynomials with coefficients from the valuation ring of an arbitrary valued field.
LA - eng
KW - irreducibility; Eisenstein criterion; polynomial
UR - http://eudml.org/doc/299509
ER -

References

top
  1. Alexandru, V., Popescu, N., Zaharescu, A., 10.1215/kjm/1250520346, J. Math. Kyoto Univ. 28 (1988), 579-592. (1988) Zbl0689.12017MR0981094DOI10.1215/kjm/1250520346
  2. Dumas, G., Sur quelques cas d'irréductibilité des polynomes á coefficients rationnels, J. Math. Pures Appl. 6 (1906), 191-258 French 9999JFM99999 37.0096.01. (1906) 
  3. Eisenstein, G., 10.1515/crll.1850.39.160, J. Reine Angew. Math. 39 (1850), 160-179 German. (1850) MR1578663DOI10.1515/crll.1850.39.160
  4. Engler, A. J., Prestel, A., 10.1007/3-540-30035-X, Springer Monographs in Mathematics. Springer, New York (2005). (2005) Zbl1128.12009MR2183496DOI10.1007/3-540-30035-X
  5. Girstmair, K., 10.1080/00029890.2005.11920194, Am. Math. Mon. 112 (2005), 269-270. (2005) Zbl1077.11017MR2125390DOI10.1080/00029890.2005.11920194
  6. Gouvêa, F. Q., 10.1007/978-3-030-47295-5, Springer, New York (2003). (2003) Zbl1436.11001MR4175370DOI10.1007/978-3-030-47295-5
  7. Jakhar, A., 10.1112/blms.12315, Bull. Lond. Math. Soc. 52 (2020), 158-160. (2020) Zbl1455.11144MR4072040DOI10.1112/blms.12315
  8. Jakhar, A., 10.1090/proc/14856, Proc. Am. Math. Soc. 148 (2020), 1429-1437. (2020) Zbl1446.12004MR4069182DOI10.1090/proc/14856
  9. Jakhar, A., Srinivas, K., 10.1016/j.jalgebra.2020.02.045, J. Algebra 556 (2020), 649-655. (2020) Zbl1443.12002MR4088446DOI10.1016/j.jalgebra.2020.02.045
  10. Jhorar, B., Khanduja, S. K., 10.1007/s00229-016-0829-z, Manuscr. Math. 151 (2016), 223-241. (2016) Zbl1351.12002MR3532244DOI10.1007/s00229-016-0829-z
  11. Khanduja, S. K., Kumar, M., 10.1007/s00229-009-0320-1, Manuscr. Math. 131 (2010), 323-334. (2010) Zbl1216.12007MR2592083DOI10.1007/s00229-009-0320-1
  12. Murty, M. Ram, 10.1080/00029890.2002.11919872, Am. Math. Mon. 109 (2002), 452-458. (2002) Zbl1053.11020MR1901498DOI10.1080/00029890.2002.11919872
  13. Schönemann, T., 10.1515/crll.1846.32.93, J. Reine Angew. Math. 32 (1846), 93-105 German. (1846) MR1578516DOI10.1515/crll.1846.32.93
  14. Weintraub, S. H., 10.1090/S0002-9939-2012-10880-9, Proc. Am. Math. Soc. 141 (2013), 1159-1160. (2013) Zbl1271.12001MR3008863DOI10.1090/S0002-9939-2012-10880-9
  15. Weintraub, S. H., 10.1090/proc/13033, Proc. Am. Math. Soc. 144 (2016), 3331-3332. (2016) Zbl1390.12001MR3503701DOI10.1090/proc/13033

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.