Tight bounds for the dihedral angle sums of a pyramid
Sergey Korotov; Lars Fredrik Lund; Jon Eivind Vatne
Applications of Mathematics (2023)
- Volume: 68, Issue: 3, page 259-268
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKorotov, Sergey, Lund, Lars Fredrik, and Vatne, Jon Eivind. "Tight bounds for the dihedral angle sums of a pyramid." Applications of Mathematics 68.3 (2023): 259-268. <http://eudml.org/doc/299514>.
@article{Korotov2023,
abstract = {We prove that eight dihedral angles in a pyramid with an arbitrary quadrilateral base always sum up to a number in the interval $(3\pi ,5\pi )$. Moreover, for any number in $(3\pi ,5\pi )$ there exists a pyramid whose dihedral angle sum is equal to this number, which means that the lower and upper bounds are tight. Furthermore, the improved (and tight) upper bound $4\pi $ is derived for the class of pyramids with parallelogramic bases. This includes pyramids with rectangular bases, often used in finite element mesh generation and analysis.},
author = {Korotov, Sergey, Lund, Lars Fredrik, Vatne, Jon Eivind},
journal = {Applications of Mathematics},
keywords = {pyramid; dihedral angle sum; tight angle bounds},
language = {eng},
number = {3},
pages = {259-268},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Tight bounds for the dihedral angle sums of a pyramid},
url = {http://eudml.org/doc/299514},
volume = {68},
year = {2023},
}
TY - JOUR
AU - Korotov, Sergey
AU - Lund, Lars Fredrik
AU - Vatne, Jon Eivind
TI - Tight bounds for the dihedral angle sums of a pyramid
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 3
SP - 259
EP - 268
AB - We prove that eight dihedral angles in a pyramid with an arbitrary quadrilateral base always sum up to a number in the interval $(3\pi ,5\pi )$. Moreover, for any number in $(3\pi ,5\pi )$ there exists a pyramid whose dihedral angle sum is equal to this number, which means that the lower and upper bounds are tight. Furthermore, the improved (and tight) upper bound $4\pi $ is derived for the class of pyramids with parallelogramic bases. This includes pyramids with rectangular bases, often used in finite element mesh generation and analysis.
LA - eng
KW - pyramid; dihedral angle sum; tight angle bounds
UR - http://eudml.org/doc/299514
ER -
References
top- Brandts, J., Cihangir, A., Křížek, M., 10.1016/j.amc.2015.02.035, Appl. Math. Comput. 267 (2015), 397-408. (2015) Zbl1410.51026MR3399056DOI10.1016/j.amc.2015.02.035
- Brandts, J., Korotov, S., Křížek, M., 10.1016/j.laa.2008.06.011, Linear Algebra Appl. 429 (2008), 2344-2357. (2008) Zbl1154.65086MR2456782DOI10.1016/j.laa.2008.06.011
- Ciarlet, P. G., 10.1016/s0168-2024(08)x7014-6, Studies in Mathematics and Its Applications 4. North-Holland, Amsterdam (1978). (1978) Zbl0383.65058MR0520174DOI10.1016/s0168-2024(08)x7014-6
- Gaddum, J. W., 10.1080/00029890.1952.11988143, Am. Math. Mon. 59 (1952), 370-371. (1952) Zbl0046.37903MR0048034DOI10.1080/00029890.1952.11988143
- Gaddum, J. W., 10.1080/00029890.1956.11988764, Am. Math. Mon. 63 (1956), 91-96. (1956) Zbl0071.36304MR0081488DOI10.1080/00029890.1956.11988764
- Katsuura, H., Solid angle sum of a tetrahedron, J. Geom. Graph. 24 (2020), 29-34. (2020) Zbl1447.51020MR4128185
- Khademi, A., Korotov, S., Vatne, J. E., 10.21136/AM.2018.0357-17, Appl. Math., Praha 63 (2018), 237-257. (2018) Zbl06945731MR3833659DOI10.21136/AM.2018.0357-17
- Khademi, A., Korotov, S., Vatne, J. E., 10.1016/j.cam.2019.03.003, J. Comput. Appl. Math. 358 (2019), 29-33. (2019) Zbl1426.65177MR3926696DOI10.1016/j.cam.2019.03.003
- Korotov, S., Vatne, J. E., 10.1016/j.camwa.2019.05.020, Comput. Math. Appl. 80 (2020), 367-370. (2020) Zbl1446.65100MR4099857DOI10.1016/j.camwa.2019.05.020
- Liu, L., Davies, K. B., Yuan, K., Křížek, M., On symmetric pyramidal finite elements, Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 11 (2004), 213-227. (2004) Zbl1041.65098MR2049777
- Wieners, C., Conforming discretizations on tetrahedrons, pyramids, prisms and hexahedrons, University Stuttgart, Bericht 97/15 (1997), 1-9. (1997)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.