On interpolation error on degenerating prismatic elements
Ali Khademi; Sergey Korotov; Jon Eivind Vatne
Applications of Mathematics (2018)
- Volume: 63, Issue: 3, page 237-257
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKhademi, Ali, Korotov, Sergey, and Vatne, Jon Eivind. "On interpolation error on degenerating prismatic elements." Applications of Mathematics 63.3 (2018): 237-257. <http://eudml.org/doc/294507>.
@article{Khademi2018,
abstract = {We propose an analogue of the maximum angle condition (commonly used in finite element analysis for triangular and tetrahedral meshes) for the case of prismatic elements. Under this condition, prisms in the meshes may degenerate in certain ways, violating the so-called inscribed ball condition presented by P. G. Ciarlet (1978), but the interpolation error remains of the order $O(h)$ in the $H^\{1\}$-norm for sufficiently smooth functions.},
author = {Khademi, Ali, Korotov, Sergey, Vatne, Jon Eivind},
journal = {Applications of Mathematics},
keywords = {prismatic finite element; interpolation error; semiregular family of prismatic partitions},
language = {eng},
number = {3},
pages = {237-257},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On interpolation error on degenerating prismatic elements},
url = {http://eudml.org/doc/294507},
volume = {63},
year = {2018},
}
TY - JOUR
AU - Khademi, Ali
AU - Korotov, Sergey
AU - Vatne, Jon Eivind
TI - On interpolation error on degenerating prismatic elements
JO - Applications of Mathematics
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 63
IS - 3
SP - 237
EP - 257
AB - We propose an analogue of the maximum angle condition (commonly used in finite element analysis for triangular and tetrahedral meshes) for the case of prismatic elements. Under this condition, prisms in the meshes may degenerate in certain ways, violating the so-called inscribed ball condition presented by P. G. Ciarlet (1978), but the interpolation error remains of the order $O(h)$ in the $H^{1}$-norm for sufficiently smooth functions.
LA - eng
KW - prismatic finite element; interpolation error; semiregular family of prismatic partitions
UR - http://eudml.org/doc/294507
ER -
References
top- Apel, T., Anisotropic Finite Elements: Local Estimates and Applications, Advances in Numerical Mathematics, Teubner, Leipzig; Technische Univ., Chemnitz (1999). (1999) Zbl0934.65121MR1716824
- Apel, T., Dobrowolski, M., 10.1007/BF02320197, Computing 47 (1992), 277-293. (1992) Zbl0746.65077MR1155498DOI10.1007/BF02320197
- Atkinson, K. E., An Introduction to Numerical Analysis, John Wiley & Sons, New York (1978). (1978) Zbl0402.65001MR0504339
- Babuška, I., Aziz, A. K., 10.1137/0713021, SIAM J. Numer. Anal. 13 (1976), 214-226. (1976) Zbl0324.65046MR0455462DOI10.1137/0713021
- Barnhill, R. E., Gregory, J. A., 10.1007/BF01399411, Numer. Math. 25 (1976), 215-229. (1976) Zbl0304.65076MR0458000DOI10.1007/BF01399411
- Brandts, J., Korotov, S., Křížek, M., 10.1016/j.camwa.2007.11.010, Comput. Math. Appl. 55 (2008), 2227-2233. (2008) Zbl1142.65443MR2413688DOI10.1016/j.camwa.2007.11.010
- Brandts, J., Korotov, S., Křížek, M., 10.1016/j.aml.2009.01.031, Appl. Math. Lett. 22 (2009), 1210-1212. (2009) Zbl1173.52301MR2532540DOI10.1016/j.aml.2009.01.031
- Brandts, J., Korotov, S., Křížek, M., 10.1007/s10492-011-0024-1, Appl. Math., Praha 56 (2011), 417-424. (2011) Zbl1240.65327MR2833170DOI10.1007/s10492-011-0024-1
- Ciarlet, P. G., The Finite Element Method for Elliptic Problems, Studies in Mathematics and Its Applications 4, North-Holland Publishing, Amsterdam (1978). (1978) Zbl0383.65058MR0520174
- Edelsbrunner, H., 10.1017/s0962492900001331, Acta Numerica 9 (2000), 133-213. (2000) Zbl1004.65024MR1883628DOI10.1017/s0962492900001331
- Hannukainen, A., Korotov, S., Křížek, M., 10.1007/s00211-011-0403-2, Numer. Math. 120 (2012), 79-88. (2012) Zbl1255.65196MR2885598DOI10.1007/s00211-011-0403-2
- Hannukainen, A., Korotov, S., Křížek, M., 10.21136/AM.2017.0132-16, Appl. Math., Praha 62 (2017), 1-13. (2017) Zbl06738478MR3615475DOI10.21136/AM.2017.0132-16
- Hannukainen, A., Korotov, S., Vejchodský, T., 10.1016/j.cam.2008.08.029, J. Comput. Appl. Math. 226 (2009), 275-287. (2009) Zbl1170.65093MR2501643DOI10.1016/j.cam.2008.08.029
- Jamet, P., 10.1051/m2an/197610r100431, Rev. Franc. Automat. Inform. Rech. Operat. 10 French (1976), 43-60. (1976) Zbl0346.65052MR0455282DOI10.1051/m2an/197610r100431
- Kobayashi, K., Tsuchiya, T., 10.1007/s10492-015-0108-4, Appl. Math., Praha 60 (2015), 485-499. (2015) Zbl1363.65015MR3396477DOI10.1007/s10492-015-0108-4
- Kobayashi, K., Tsuchiya, T., 10.1007/s13160-014-0161-5, Japan J. Ind. Appl. Math. 32 (2015), 65-76. (2015) Zbl1328.65052MR3318902DOI10.1007/s13160-014-0161-5
- Kobayashi, K., Tsuchiya, T., 10.1007/s10492-016-0125-y, Appl. Math., Praha 61 (2016), 121-133. (2016) Zbl06562150MR3470770DOI10.1007/s10492-016-0125-y
- Korotov, S., Plaza, Á., Suárez, J. P., 10.1016/j.cam.2015.03.046, J. Comput. Appl. Math. 293 (2016), 139-146. (2016) Zbl1329.65292MR3394208DOI10.1016/j.cam.2015.03.046
- Křížek, M., On semiregular families of triangulations and linear interpolation, Appl. Math., Praha 36 (1991), 223-232. (1991) Zbl0728.41003MR1109126
- Křížek, M., 10.1137/0729031, SIAM J. Numer. Anal. 29 (1992), 513-520. (1992) Zbl0755.41003MR1154279DOI10.1137/0729031
- Křížek, M., Neittaanmäki, P., 10.1007/978-94-015-8672-6, Kluwer Academic Publishers, Dordrecht (1996). (1996) Zbl0859.65128MR1431889DOI10.1007/978-94-015-8672-6
- Křížek, M., Preiningerová, V., Calculation of the 3d temperature field of synchronous and of induction machines by the finite element method, Elektrotechn. obzor 80 (1991), 78-84 Czech. (1991)
- Kučera, V., A note on necessary and sufficient conditions for convergence of the finite element method, Proc. Int. Conf. Applications of Mathematics, Praha Czech Academy of Sciences, Institute of Mathematics, Praha J. Brandts et al. (2015), 132-139. (2015) Zbl1363.65189MR3700195
- Kučera, V., On necessary and sufficient conditions for finite element convergence, Available at https://arxiv.org/abs/1601.02942 (2016), 42 pages. (2016) MR3700195
- Kučera, V., 10.1007/s10492-016-0132-z, Appl. Math., Praha 61 (2016), 287-298. (2016) Zbl06587853MR3502112DOI10.1007/s10492-016-0132-z
- Mao, S., Shi, Z., 10.1016/j.cam.2008.11.008, J. Comput. Appl. Math. 230 (2009), 329-331. (2009) Zbl1168.65063MR2532314DOI10.1016/j.cam.2008.11.008
- Oswald, P., 10.1007/s10492-015-0107-5, Appl. Math., Praha 60 (2015), 473-484. (2015) Zbl1363.65202MR3396476DOI10.1007/s10492-015-0107-5
- Synge, J. L., The Hypercircle in Mathematical Physics. A Method for the Approximate Solution of Boundary Value Problems, Cambridge University Press, New York (1957). (1957) Zbl0079.13802MR0097605
- Ženíšek, A., Convergence of the finite element method for boundary value problems of a system of elliptic equations, Apl. Mat. 14 Czech (1969), 355-376. (1969) Zbl0188.22604MR0245978
- Zlámal, M., 10.1007/BF02161362, Numer. Math. 12 (1968), 394-409. (1968) Zbl0176.16001MR0243753DOI10.1007/BF02161362
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.